Tìm giá trị nhỏ nhất của biểu thức
A=/1993-x/+/1994-x/
B=x^2 + 3/y-2/-1
Tìm giá trị nhỏ nhất của biểu thức: A= | 1993-x | + | 1994 -x |
A = | 1993 - x| + |1994 - x|
GTNN của | 1993 - x| là 0 vs mọi số nuyên x
GTNN của | 1994 - x| là 0 vs mọi số nguyên x
=> GTNN của A = | 1993 - 1994| hoặc | 1994 - 1993| = 1
a) tìm giá trị lớn nhất của các biểu thức sau:
A=|x-3|-|5-x|
b) tìm giá trị nhỏ nhất của biểu thức :
B=|1993-x|+|1994-x|
a) Ta có A= x - 3 + ( 5 -x )
\(\Rightarrow\)x -3 +5 - x = 2 . vậy max( A ) = 2
b) ta có B = 1993 - x -(1994 - x)
\(\Rightarrow\)1993 - x -1994 +x = -1 . vậy min (B) = -1
Tìm giá trị x nhỏ nhất của các biểu thức sau:
a, I = | 1993 -x| + |1994 - x|
b, G = | x+ \(\frac{1}{2}\)| + | x+ \(\frac{1}{3}\)| + | x+ \(\frac{1}{4}\)|
c, E = ( x4 + 5)2
d, B = 1,5 + | 2 - x|
bvnty7bvjy,g8i8.ohu/.gyuo.jlk rf679.y,7 7/hnkhvg yuki hbbuj vghj nhik ygci t7cy y j
hỏi chụy Google
a/Tìm x để biểu thức sau có giá trị nhỏ nhất: (x^2)+x+1.
b/Tìm giá trị nhỏ nhất của biểu thức: A=y*(y+1)*(y+2)*(y+3).
c/Phân tích đa thức thành nhân tử: (x^3)+(y^3)+(z^3)-(3*x*y*z)
.
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
Tìm giá trị nhỏ nhất : \(D=\left|x-1\right|+\left|x-4\right|;B=\left|1993-x\right|+\left|1994-x\right|;C=x^2+\left|y-2\right|-5\)
\(D=|x-1|+|x-4|=|x-1|+|4-x|\ge|x-1+4-x|=3\)
\(B=|1993-x|+|1994-x|=|1993-x|+|x-1994|\ge|1993-x+x-1994|=1\)
\(C=x^2+|y-2|-5\ge-5\)
Để D nhỏ nhất => I x-1I bé nhất hoặc I x-4I bé nhất => x-1 =0 hoặc x-4=0
=> x= 1 hoặc x=4
Vậy GTNN của D là: I 1-4I = 3 tại x= 1 hoặc x=4
B tương tự
Để C nhỏ nhất => x^2 bé nhất và I y - 2I bé nhất => x^2 = 0 và y-2 = 0
x= 0 và y=2
VaayjGTNN của C là -5 tại x=0 và y=2
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
Tính giá trị biểu thức A với a = 1 và b =0 : A = (1993 : a + 1993 x a ) +1994 x b
Thay a = 1, b = 0 vào biểu thức ta có:
A = (1993 : 1 + 1993 . 0) + 1994 . 0
= 1993 + 1994 . 0
= 1993
Vậy GTBT A là 1993.
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)
có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)
từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)
=>Min A=(1+\(\sqrt{2}\))^2
b, ta có : \(x+y=1=>2x+2y=2\)
\(B=\dfrac{1}{x^2+y^2}+\dfrac{3}{4xy}=\dfrac{4}{4x^2+4y^2}+\dfrac{6}{8xy}\)\(\ge\dfrac{\left(2+\sqrt{6}\right)^2}{\left(2x+2y\right)^2}\)
\(=\dfrac{\left(2+\sqrt{6}\right)^2}{2^2}=\dfrac{5+2\sqrt{6}}{2}\)=>\(B\ge\dfrac{5+2\sqrt{6}}{2}\)
=>\(MinB=\dfrac{5+2\sqrt{6}}{2}\)
a) Tìm giá trị lớn nhất của biểu thức: A=\(\frac{3}{\left(x+2\right)^2+4}\)
b) Tìm giá trị nhỏ nhất của biểu thức: B=(x+1)2+(y+3)2+1
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3