Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LA
Xem chi tiết
HA
Xem chi tiết
NN
18 tháng 10 2020 lúc 20:00

a) Từ \(\frac{x}{2}=\frac{y}{3}\)(1)\(\Rightarrow\left(\frac{x}{2}\right)^2=\left(\frac{y}{3}\right)^2=\frac{x^2}{4}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)

\(\Rightarrow x^2=4.4=16\)\(\Rightarrow x=\pm4\)

\(y^2=4.9=36\)\(\Rightarrow y=\pm6\)

Từ (1) \(\Rightarrow\)x, y phải có cùng dấu

Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn là \(\left(-4;-6\right)\)\(\left(4;6\right)\)

b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\left(k\ne0\right)\)

\(\Rightarrow x=2k\)\(y=3k\)

\(\Rightarrow x.y=2k.3k=6k^2=54\)

\(\Rightarrow k^2=9\)\(\Rightarrow k=\pm3\)

+) Nếu \(k=-3\)\(\Rightarrow x=2.\left(-3\right)=-6\)và \(y=3.\left(-3\right)=-9\)

+) Nếu \(k=3\)\(\Rightarrow x=2.3=6\)và \(y=3.3=9\)

Vậy các cặp giá trị \(\left(x;y\right)\)thỏa mãn là \(\left(-6;-9\right)\)\(\left(6;9\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 10 2020 lúc 20:03

a) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k;y=3k\)

Ta có : \(x^2+y^2=52\)

\(\Rightarrow\left(2k\right)^2+\left(3k\right)^2=52\)

                  \(4k^2+9k^2=52\)

                              \(13k^2=52\)

                                   \(k^2=4\)

                               \(\Rightarrow k=2\)

\(\Rightarrow x=2.2=4\)

      \(y=3.2=6\)

Vậy \(x=4;y=6\)

b) Đặt \(\frac{x}{2}=\frac{y}{3}=t\)

\(\Rightarrow x=2t;y=3t\)

Ta có : \(x.y=54\)

    \(\Rightarrow2t.3t=54\)

              \(6t^2=54\)

                 \(t^2=9\)

              \(\Rightarrow t=3\)

\(\Rightarrow x=2.3=6\)

      \(y=3.3=9\)

Vậy \(x=6;y=9\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
SG
16 tháng 7 2016 lúc 18:48

Do x/2 = y/3 => 3x = 2y

=> x = 2/3y

Ta có: x.y = 54

=> 2/3y.y = 54

=> y2 = 54 : 2/3

=> y2 = 54 . 3/2

=> y2 = 81

=> y thuộc {9 ; -9}

+ Với y = 9 => x = 2/3.9 = 6

+ Với y = -9 => x = 2/3.(-9) = -6

Vậy x = 6; y = 9 hoặc x = -6; y = -9

Bình luận (0)
DT
16 tháng 7 2016 lúc 18:44

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{x.y}{2.3}=\frac{54}{6}=9\)

\(\Rightarrow\frac{x}{2}=9\Rightarrow x=18\)

\(\Rightarrow\frac{x}{3}=9\Rightarrow x=27\)

Bình luận (0)
NN
16 tháng 7 2016 lúc 18:44

x=6; y=9

Bình luận (0)
DM
Xem chi tiết
DH
10 tháng 1 2017 lúc 15:58

a Ta có: \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

              \(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\left(2\right)\)

Từ (1);(2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

=> x = 2 x 10 = 20

      y = 2 x 15 = 30

      z = 2 x 21 = 42

b) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

=> x = 2k ; y = 3k

=> xy = 6.k2

=> 54 = 6.k2

=> k2 = 54 : 6 = 9

=> k = 3 hoặc k = -3

=> x =  3 x 2=6 hoặc x =( -3) x 2 = -6

     y = 3 x 3 = 9 hoặc y = (-3) x 3 = -9

Bình luận (0)
H24
10 tháng 1 2017 lúc 21:58

\(\text{a,Ta có:}\)\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)  \(\text{và}\)\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

\(\text{Áp dụng tính chất DTSBN có}\)

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\text{Suy ra}:x=2.10=20;y=2.15=30;z=2.21=42\)

\(\text{Vậy }x=20;y=30;z=42\)

\(\text{b, Đặt }\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)

\(\text{Theo đề, ta có}\)

\(xy=54\Rightarrow2k.3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k=3\text{hoặc }k=-3\)

\(\text{Suy ra: }x=2.3=6\text{hoặc}x=2.\left(-3\right)=-6\)    \(y=3.3=9\text{ hoặc }y=-3.3=-9\) 

\(\text{Vậy với k=3 }\Rightarrow x=6;y=9\)

         \(\text{với k=-3\Rightarrow x=-6;y=-9}\)

Bình luận (0)
LS
Xem chi tiết
H24
30 tháng 11 2015 lúc 22:18

Tick mình nha:

Đặt x/2=y/3=k->x/2=2k và y/3=3k      (1)

->2k*3k=54->6k^2=54->k^2=9->k=3

thay vào (1) ta có

x=6; y=9

vậy x=6 và y=9(tick nha)

Bình luận (0)
DD
Xem chi tiết
TM
1 tháng 7 2016 lúc 21:29

Đặt \(\frac{x}{2}=\frac{y}{3}=k\)=>x=2k và y=3k

=>x.y=2k.3k=6k2=54

=>k2=54:6=9

=>k2=(-3)2 hoặc k2=32

=>k=-3 hoặc k=3

+)Nếu k=-3

=>x=(-3).2=-6

    y=(-3).3=-9

+)Nếu k=3

=>x=3.2=6

    y=3.3=9

Vậy...

Bình luận (0)
ND
Xem chi tiết
DL
4 tháng 7 2017 lúc 19:53

a,

Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k,y=3k\)

=> xy = 2k3k = 6k2 = 54

=> k2 = 9 

=> k = +-3 

=> [x,y] = [-6;-9], [6;9]

b,

\(\frac{5}{x}=\frac{3}{y}\Leftrightarrow\frac{25}{x^2}=\frac{9}{y^2}\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{25}{x^2}=\frac{9}{y^2}=\frac{25-9}{x^2-y^2}=\frac{16}{4}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\\y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\end{cases}}\)

c,

\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)

\(\Rightarrow\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y}{18}=\frac{1+2y+1+6y}{18+6x}=\frac{2+8y}{18+6x}=\frac{2\left[1+4y\right]}{2\left[9+3x\right]}=\frac{1+4y}{9+3x}\)

=> 24 = 9 + 3x

=> 3x = 15

=> x = 5

\(\frac{1+2y}{18}=\frac{1+4y}{24}\Leftrightarrow24\left[1+2y\right]=18\left[1+4y\right]\Leftrightarrow24+48y=18+72y\)

=> 24 + 48y - 18 = 72y

=> 6 + 48y = 72y

=> 6 = 24y

=> y = 1/4

Bình luận (0)
PN
10 tháng 7 2017 lúc 21:44

Đào Trọng Luân thiếu TH rồi

Bình luận (0)
DK
Xem chi tiết
H24
4 tháng 7 2019 lúc 15:22

+) Có: \(x:y:z:t=2:3:4:5\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=\left(-3\right)\cdot2=-6\\\frac{y}{3}=-3\Rightarrow y=\left(-3\right)\cdot3=-9\\\frac{z}{4}=-3\Rightarrow z=\left(-3\right)\cdot4=-12\\\frac{t}{5}=-3\Rightarrow t=\left(-3\right)\cdot5=-15\end{matrix}\right.\)

Vậy \(x=-6;y=-9;z=-12;t=-15\)

+) Gọi giá trị chung của tỉ lệ thức là k, ta có:

\(\frac{x}{4}=\frac{y}{7}=k\\ \Rightarrow x=4k;y=7k\)

Lại có: \(x\cdot y=112\)

\(\Rightarrow4k\cdot7k=112\\ 28k^2=112\\ \Rightarrow k^2=4\\ \Rightarrow k=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot\left(\pm2\right)=\pm8\\y=7k=7\cdot\left(\pm2\right)=\pm14\end{matrix}\right.\)

Vậy \(x=\pm8;y=\pm14\)

+) Gọi giá trị chung của tỉ lệ thức là h, ta có:

\(\frac{x}{3}=\frac{y}{4}=h\\ \Rightarrow x=3h;y=4h\)

Lại có: \(x\cdot y=48\)

\(\Rightarrow3h\cdot4h=48\\ 12h^2=48\\ \Rightarrow h^2=4\\ \Rightarrow h=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=3h=3\cdot\left(\pm2\right)=\pm6\\y=4h=4\cdot\left(\pm2\right)=\pm8\end{matrix}\right.\)

Vậy \(x=\pm6;y=\pm8\)

+) Gọi giá trị chung của tỉ lệ thức là g, ta có:

\(\frac{x}{2}=\frac{y}{-3}=g\\ \Rightarrow x=2g;y=-3g\)

\(xy=-54\)

\(\Rightarrow2g\cdot\left(-3g\right)=-54\\ -6g^2=-54\\ g^2=9\\ \Rightarrow g=\pm3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2g=2\cdot\left(\pm3\right)=\pm6\\y=-3g=\left(-3\right)\cdot\left(\pm3\right)=\pm9\end{matrix}\right.\)

Vậy \(x=\pm6;y=\pm9\)

+) \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\\left|y^2-9\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\pm3\end{matrix}\right.\)

Vậy \(x=2;y=\pm3\)

+) \(-0,16:x=-x:25\)

\(-0,16\cdot25=-x\cdot x\\ -x^2=-4\\ \Rightarrow x^2=4\\ \Rightarrow x=\pm2\)

Vậy \(x=\pm2\)

Bình luận (0)
DT
Xem chi tiết
ND
24 tháng 10 2020 lúc 13:28

Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=k\left(k\inℝ\right)\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=4k\end{cases}}\) thay vào ta được:

  \(\left(2k\right)^2-2k\cdot5k+3\cdot5k\cdot4k=54\)

\(\Leftrightarrow4k^2-10k^2+60k^2=54\)

\(\Leftrightarrow54k^2=54\)

\(\Leftrightarrow k^2=1\)

\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

Nếu k = 1 => \(\hept{\begin{cases}x=2\\y=5\\z=4\end{cases}}\)                                    Nếu k = -1 => \(\hept{\begin{cases}x=-2\\y=-5\\z=-4\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
24 tháng 10 2020 lúc 13:29

Sửa lại đoán cuối bị lỗi:

\(\hept{\begin{cases}x=2\\y=5\\z=4\end{cases}}\) hoặc \(\hept{\begin{cases}x=-2\\y=-5\\z=-4\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa