\(\frac{x+2}{3}=\frac{y-3}{4}=\frac{z+1}{5}\) va \(x+y+z=-12\)
tim x,y,z khi
\(\frac{x}{7}=\frac{y}{3}va\)x-24=y
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{2}\)va y-x=48
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)va x-y- z=28
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)va 2x+3-z=-14
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
Tim x,y,z :
a) x=y:2,\(\frac{y}{4}=\frac{z}{5}\)va 2x+2y-z-7=0
b)\(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\)va x-y=15
c)\(\frac{x}{y}=\frac{2}{3}\), \(\frac{x}{z}=\frac{1}{2}\)va \(x^3\)- xyz=-16
a)Ta có : 2x+2y-z-7=0 => 2x+2y-z=7
Ta có : \(x=\frac{y}{2}=>\frac{x}{2}=\frac{y}{4}\)
Mà \(\frac{y}{4}=\frac{z}{5}\)nên \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}=\frac{2x+2y-z}{4+8-5}=\frac{7}{7}=1\)
Từ \(\frac{x}{2}=1=>x=2\)
Từ\(\frac{y}{4}=1=>y=4\)
Từ \(\frac{z}{5}=1=>z=5\)
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{2x}{4}=\frac{2y}{8}\)
b) Ta có: \(\frac{1}{2}x=\frac{2}{3}y=\frac{3}{4}z\) <=> \(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x-y}{2-\frac{3}{2}}=\frac{15}{\frac{1}{2}}=30\)
=> \(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}}\) => \(\hept{\begin{cases}x=30.2=60\\y=30.\frac{3}{2}=45\\z=30.\frac{4}{3}=40\end{cases}}\)
Vậy ...
Tim x,y,z biet
a,5x= 8y= 20z va x-y-z = 3
b,\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)va -x+y+z =120
c,\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)va x . y . z =20
d,\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)va \(^{x^2+y^2-z^2}\)=585
nguyen tran phuong vy: vt sai kìa, phải là I don't know
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)
\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
\(\Rightarrow x=165;y=20;z=25\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\) va x+y+z=30.Tim x,y,z
C, CHO 7X=3Y VA X -Y =16
D, CHO \(\frac{X}{2}=\frac{Y}{3}=\frac{Z}{4}\)VA A +2B -3C = -20
E, CHO X :Y :Z =7:4:2 VA X- 3Z =9
F,CHO \(\frac{X}{Y}=\frac{7}{10};\frac{Y}{Z}=\frac{10}{3}\)VA X+Y+Z=120
G,CHO 3X=4Y=5Z VA X-Y-Z=-42
C, CHO 7X=3Y VA X -Y =16
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
=> \(\hept{\begin{cases}x=-4.3\\y=-4.7\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-28\end{cases}}}\)
bạn viết lại đề đi đè gì mà sai hết
a) \(\frac{x}{3}\)= \(\frac{y}{4}\), \(\frac{y}{5}\)= \(\frac{z}{7}\)va 2x + 3y - z = 124
b)\(\frac{x}{5}\)= \(\frac{y}{3}\)va x2 - y2 = 4
c) \(\frac{x}{2}\)=\(\frac{y}{3}\)va xy = 54
d) \(\frac{x}{y+z+1}\)=\(\frac{y}{z+x+1}\)=\(\frac{z}{x+y-2}\)= x + y + z
Mong các bạn giúp mình nha
Chứ mình học ngu lam
Câu a,câu d mk làm rồi nhé
b, Ta có : \(\frac{x}{5}=\frac{y}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{25}=\frac{1}{4}\\\frac{y^2}{9}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=\frac{25}{4}\\y^2=\frac{9}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\pm\frac{5}{2}\\y=\pm\frac{3}{2}\end{cases}}\)
c, Đặt : \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)
=> x.y = 2k.3k = 6k2
=> 6k2 = 54
=> k2 = 9
=> k = \(\pm3\)
Như vậy ta tìm được x = 6 , y = 9 hay x = -6 , y = -9
a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)
\(\Rightarrow x=15.2=30;\)
\(y=20.2=40;\)
\(z=28.2=56\)
Vậy x = 30; y = 40 ; z = 56
b) Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
\(\Rightarrow x=5k;y=3k\)
Khi đó \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Rightarrow5^2.k^2-3^2.k^2=4\)
\(\Rightarrow25.k^2-9.k^2=4\)
\(\Rightarrow k^2.\left(25-9\right)=4\)
\(\Rightarrow k^2.16=4\)
\(\Rightarrow k^2.4^2=2^2\)
\(\Rightarrow k^2=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow k=\pm\frac{1}{2}\)
Nếu \(k=\frac{1}{2}\Rightarrow x=5.\frac{1}{2}=\frac{5}{2};y=3.\frac{1}{2}=\frac{3}{2}\)
Nếu \(k=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}.5=-\frac{5}{2};y=-\frac{1}{2}.3=-\frac{3}{2}\)
Vậy các cặp (x;y) thỏa mãn là : \(\left(\frac{5}{2};\frac{3}{2}\right);\left(-\frac{5}{2};-\frac{3}{2}\right)\)
c) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)
\(\Rightarrow x=2k;y=3k\)
Khi đó xy = 54
<=> 2k.3k = 54
=> 6.k2 = 54
=> k2 = 9
=> k2 = 32
=> \(k=\pm3\)
Nếu k = 3 => x = 2.3 = 6 ; y = 3.3 = 9
Nếu k = - 3 => x = 2.(-3) = 6 ; y 3.(-3) = 9
Vậy các cặp số (x;y) thỏa mãn là : (6;9) ; (-6;-9)
2x = 5y và x - 2y = -12
2x = 3y = 4z và x + y + z =21
\(\frac{x}{3}=\frac{y}{5}vàx+y=32\)
7x = 3y và x - y =16
\(\frac{2}{3}x=\frac{3}{4}y=\frac{5}{6}zvàx^2+y^2+z^2=724\)
\(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}vàx+y+z=102\)
\(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}vàx-2y+3z=46\)
\(\frac{x}{3}=\frac{y}{16}vàx.y=192\)
a/ 2x = 5y và x - 2y = -12
Ta có: 2x = 5y => \(\frac{x}{5}=\frac{y}{2}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5+2}=\frac{x-2y}{5+2.2}=\frac{-12}{9}=-\frac{4}{3}\)
\(\frac{x}{5}=-\frac{4}{3}\Rightarrow x=\frac{-4}{3}.5=-\frac{20}{3}\)
\(\frac{y}{2}=-\frac{4}{3}\Rightarrow y=-\frac{4}{3}.2=-\frac{8}{3}\)
Vậy:.................
b/ 2x = 3y = 4z và x + y + z =21
Ta có: 2x = 3y = 4z
=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{21}{13}.6=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{21}{13}.4=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{21}{13}.3=\frac{63}{13}\)
Vậy:...............
c/Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{32}{8}=4\)
\(\frac{x}{3}=4\Rightarrow x=4.3=12\)
\(\frac{y}{5}=4\Rightarrow y=4.5=20\)
Vậy:................
d/ Ta có: 7x = 3y
=> \(\frac{7x}{21}=\frac{3y}{21}\)
=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng: tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x-y}{3-7}=\frac{16}{-4}=-4\)
\(\frac{x}{4}=-4\Rightarrow x=\left(-4\right).4=-16\)
\(\frac{y}{7}=-4\Rightarrow y=\left(-4\right).7=-28\)
Vậy:................
1,\(2x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{5}=\frac{2y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{2y}{4}=\frac{x-2y}{5-4}=\frac{-12}{1}=-12\)
Do đó:
\(\frac{x}{5}=-12\Rightarrow x=-60\)
\(\frac{2y}{4}=-12\Leftrightarrow\frac{y}{2}=-12\Rightarrow x=-24\)
Vây x = -60,y = -24
2, 2x = 3y = 4z \(\Rightarrow BCNN\left(2;3;4\right)=12\)
nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{6+4+3}=\frac{21}{13}\)
Do đó
\(\frac{x}{6}=\frac{21}{13}\Rightarrow x=\frac{6.21}{13}=\frac{126}{13}\)
\(\frac{y}{4}=\frac{21}{13}\Rightarrow y=\frac{4.21}{13}=\frac{84}{13}\)
\(\frac{z}{3}=\frac{21}{13}\Rightarrow z=\frac{3.21}{13}=\frac{63}{13}\)
f/ \(\frac{x}{3}=\frac{y}{5};\frac{y}{2}=\frac{z}{7}\)
=> \(\frac{x}{6}=\frac{y}{10};\frac{y}{10}=\frac{z}{35}\)
=> \(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{6}=\frac{y}{10}=\frac{z}{35}=\frac{x+y+z}{6+10+35}=\frac{102}{51}=2\)
\(\frac{x}{6}=2\Rightarrow x=2.6=12\)
\(\frac{y}{10}=2\Rightarrow y=2.10=20\)
\(\frac{z}{35}=2\Rightarrow z=2.35=70\)
Vậy:.................
h/ Đăt: \(\frac{x}{3}=\frac{y}{16}=k\)
\(\frac{x}{3}=k\Rightarrow x=3k\)
\(\frac{y}{16}=k\Rightarrow y=16k\)
Ta có: x. y = 192
=> 3k. 16k = 192
=> k2. (3. 16) = 192
=> k2. 48 = 192
=> k2 = 192 : 48 = 4
=> k = \(\pm\) 2
*Với k = 2
\(\frac{x}{3}=k\Rightarrow x=3.k=3.2=6\)
\(\frac{y}{16}=k\Rightarrow y=16.k=16.2=32\)
*Với k = -2
\(\frac{x}{3}=k\Rightarrow x=3.k=3.\left(-2\right)=-6\)
\(\frac{y}{16}=k\Rightarrow y=16.k=16.\left(-2\right)=-32\)
Vậy:..........
tìm x,y,z biết \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z-4}\)va x+y+z=17
Cho hệ phương trình:\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)Tính x+y+z
1 slot tối làm cho.Giờ đi học đã =))
\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+y-3z=12\\3x+6y+10z=30\end{cases}}\)
\(\Rightarrow7\left(x+y+z\right)=42\)
\(\Leftrightarrow x+y+z=6\)
\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x+y-3z=12\\3x+6y+10z=30\end{cases}}\)
=> 7 ( x + y +z ) = 42
<=> x + y + z = 6