tìm số tự nhiên A và B biết A+B=180 và BCNN (A,B)=60
giúp tui vs nha
tìm các số tự nhiên a và b biết
a>b ; a.b =2700 và BCNN(a,b)=180
GIÚP MK VS NHA
UCLN(a,b) = 15; BCNN(a,b) = 180 ---> a.b = 15.180 = 2700
Mà 2700 = (2^2)(3^3)(5^2)
--->
{ a = 3.5 = 15 ; b = (2^2)(3^2).5 = 180
{ a = (3^2).5 = 45 ; b = (2^2).3.5 = 60
{ a = 180 ; b = 15
{ a = 60 ; b = 45
tìm 2 số tự nhiên a và b biết a+b= 180 và BCNN (a,b)=60
ai giải nhanh tui tick cho
Số a là :
\(\left(180+60\right):2=120\)
Số b là :
\(\left(180-60\right):2=60\)
Đáp số: ................
Bài này có 2 cách cách trên là cách đơn giản
Còn cách nữa là : tìm BCNN ( 60 ) rồi thử dài lắm
Tìm hai số tự nhiên a và b biết a > b, a + b = 16 và ƯCLN ( a ,b ) = 4 b) Tìm 2 số tự nhiên a và b biết BCNN ( a, b ) = 180, ƯCLN ( a, b ) =12
tìm số tự nhiên a và b biết a+b=180và BCNN(a,b)=60
bạn nào giải nhanh tui tick cho nha^^
Tìm các số tự nhiên a và b (a<b), biết:
a) ƯCLN ( a, b ) = 15 và BCNN ( a, b ) = 180
b) ƯCLN ( a, b ) = 11 và BCNN ( a, b ) = 484
Trước tiên, ta cần chứng minh 2 bổ đề sau:
Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\).
Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)
Chứng minh:
Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)
Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.
Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)
\(\Leftrightarrow kl-k-l+1\ge0\)
\(\Leftrightarrow kl+1\ge k+l\)
\(\Leftrightarrow dkl+d\ge dk+dl\)
\(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)
Vậy 2 bổ đề đã được chứng minh.
a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)
Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:
\(a\in\left\{15;30;45\right\}\)
Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)
Nếu \(a=30\) thì \(b=90\) (loại)
Nếu \(a=45\) thì \(b=60\) (thỏa)
Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)
Câu b làm tương tự.
tìm số tự nhiên a và b biết a+b=180 và BCNN(a,b)=60
tìm 2 số tự nhiên a và b, biết a-b=6 và BCNN(a,b)=180
tìm 2 số tự nhiên a và b biết A+B=180 và BCNN(A, B)= 60
tìm số tự nhiên a,b, biết a+b=150 và BCNN(a,b)=180