a) chứng minh A chia hết cho13
b) Thu gọn A
Chứng minh rằng :
a ) 125 a + 25 b - 75 c chia hết cho 25 b ) 39a + 26b chia hết cho13a) \(125a+25b-75c\)
\(=25\left(5a+b-3c\right)⋮25\)
\(\Rightarrow dpcm\)
b) \(39a+26b\)
\(=13\left(3a+2b\right)⋮13\)
\(\Rightarrow dpcm\)
cho biết a+4b chia hết cho 13 (a,b thuộc N ).Chứng minh rằng :10a+b chia hết cho13
chứng minh rằng nếu a - 5b chia hết cho13 thì 10a +b chia hết cho 13 ?
ta có:5(10a+b)+(a-5b)=(50a+5b)+(a-5b)
=51a chia hết cho 13
\(\Rightarrow\)5(10a+b)+(a-5b) chia hết cho 13
mà a-5b chia hết cho13 nên 5(10a+b)chia hết cho 13
suy ra 10a+b chia hết cho 13
Tổng A = 1/3 + 1/4 + 1/5 + ..... + 1/10 = a/b . Chứng minh rằng A chia hết cho13
\(A=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.........+\frac{1}{13}\)
\(A=\left(\frac{1}{3}+\frac{1}{10}\right)+\left(\frac{1}{4}+\frac{1}{9}\right)+\left(\frac{1}{5}+\frac{1}{8}\right)+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(A=\left(\frac{10}{30}+\frac{3}{30}\right)+\left(\frac{9}{36}+\frac{4}{36}\right)+\left(\frac{8}{40}+\frac{5}{40}\right)+\left(\frac{7}{42}+\frac{6}{42}\right)\)
\(A=\frac{13}{30}+\frac{13}{36}+\frac{13}{40}+\frac{13}{42}\)
Chọn mẫu chung là 30.36.40.42
Gọi thừa số phụ của các phân số trên là \(k_1,k_2,k_3,k_4\)
Ta được:
\(\frac{a}{b}=\frac{11.k_1}{30.36.40.42}+\frac{11.k_2}{30.36.40.42}+\frac{11.k_3}{30.36.40.42}+\frac{11.k_4}{30.36.40.42}\)
\(\frac{a}{b}=\frac{11.k_1+11.k_2+11.k_3+11.k_4}{30.36.40.42}\)
\(\frac{a}{b}=\frac{11.\left(k_1+k_2+k_3+k_4\right)}{30.36.40.42}\)
Vì mẫu chung 30.36.40.42 không chứa thừa số nguyên tố 11 nên khi rút gọn phân số A thì a vẫn chứa thừa số nguyên tố 11.
Vậy a chia hết cho 11.
cho A= 15x - 23y và B= 2x + 3y. chứng minh nếu x,y là số nguyên và A chia hết cho13 thì B cũng chia hết cho 13
Ta có
A-B=15x-23y-2x-3y=13x-26y=13.(x-2y) chí hết cho 14
Mà A chí hết cho 13 =>b chia hết cho 13 và ngược lại
A 1 3 3² 3³ ..........3¹⁰¹.Chứng minh rằng A chia hết cho13
\(A=1+3+3^2+3^3+...+3^{101}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{99}\right)\)chia hết cho \(13\).
Chứng minh rằng: a+4b chia hết cho13\(\Leftrightarrow\)10a+b chia hết cho 5.
Chứng minh rằng:
A= 3+32+33+..315
a) Chia hết cho 3
b) Chia hết cho13
a) Vì mỗi số đều chia hết cho 3 => A chia hết cho 3
b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)
A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)
A= 1.39+3.39+....+312.39
=> Vì 39 chia hết cho cho 3
=> ĐPCM
a) bạn hỏi tính chất à
b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)
A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)
A= 1.39+3.39+....+312.39
=> Vì 39 chia hết cho cho 3
=> ĐPCM
a) bạn hỏi tính chất à
b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)
A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)
A= 1.39+3.39+....+312.39
=> Vì 39 chia hết cho cho 3
=> ĐPCM
bài 1:cho a chia hết cho m;b chia hết cho m và a+b+c không chia hết cho m ;chứng minh c không chia hết cho m
bài 2:so sánh
a)21^15 và 27^5*49^8
b)3^99 và 11^21
bài 3:chứng minh
A=1+3+3^2+3^3+..........+3^11 chia hết cho13