Những câu hỏi liên quan
H24
Xem chi tiết
H24
17 tháng 8 2018 lúc 21:09

A B C H E F 5 cm 12 cm

a) Áp dụng định lí Py-ta-go cho  \(\Delta ABC\)vuông tại A ta có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=5^2+12^2\)

\(\Leftrightarrow BC^2=169\)

\(\Leftrightarrow BC=13\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác ta có :  \(AB.AC=BC.AH\)

\(\Leftrightarrow AH=\frac{5.12}{13}=\frac{60}{13}\left(cm\right)\)

b) Áp dụng hệ thức lượng ta có  \(AB^2=BH.BC\Leftrightarrow BH=\frac{5^2}{13}=\frac{25}{13}\left(cm\right)\)

Do BE là tia phân giác \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{HE}=\frac{AB}{BH}=5\div\frac{25}{13}=\frac{13}{5}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AE}{13}=\frac{HE}{5}=\frac{AE+HE}{13+5}=\frac{AH}{18}=\frac{60}{13}\div18=\frac{10}{39}\)

\(\Rightarrow AE=\frac{10}{39}\times13=\frac{10}{3}\left(cm\right)\)

Mặt khác BF là tia phân giác  \(\widehat{ABC}\)

\(\Rightarrow\frac{AF}{FC}=\frac{AB}{BC}=\frac{5}{13}\)

Theo dãy tỉ số bằng nhau ta được :

\(\frac{AF}{5}=\frac{FC}{13}=\frac{AF+FC}{5+13}=\frac{AC}{18}=\frac{2}{3}\)

\(\Rightarrow AF=\frac{2}{3}\times5=\frac{10}{3}\left(cm\right)\)

Xét  \(\Delta AEF\)có  \(AE=AF\left(=\frac{10}{3}cm\right)\)

\(\Rightarrow\Delta AEF\)cân tại A ( đpcm )

Vậy ...

Bình luận (0)
TN
Xem chi tiết
CC
Xem chi tiết
AT
17 tháng 8 2018 lúc 23:25

hình,

A B C H E F 1 2 1 2 1

~~~

a/ A/dụng pitago vào tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2=5^2+12^2=169\Rightarrow BC=13\left(cm\right)\)

Xét ΔHBA và ΔABC có:

\(\left\{{}\begin{matrix}\widehat{H}=\widehat{A}=90^o\left(gt\right)\\\widehat{B}:chung\end{matrix}\right.\)

=>ΔHBA ~ ΔABC (g.g)

=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{5\cdot12}{13}\approx4,6\left(cm\right)\)

b/ Xét ΔABF và ΔHBE có:

\(\left\{{}\begin{matrix}\widehat{A}=\widehat{H}=90^o\left(gt\right)\\\widehat{B_1}=\widehat{B_2}\left(gt\right)\end{matrix}\right.\)

=> ΔABF ~ ΔHBE (g.g)

=> \(\widehat{F_1}=\widehat{E_2}\) (2 góc tương ứng)

mặt khác: \(\widehat{E_1}=\widehat{E_2}\)(đối đỉnh)

=> \(\widehat{F_1}=\widehat{E_1}\)

=> ΔAEF cân tại A (đpcm)

Bình luận (0)
H24
Xem chi tiết
TT
21 tháng 7 2017 lúc 17:48

A B C H

ta co \(AH^2=BH\cdot HC\Rightarrow AH^2=1,8HC\)

ap dung dl pitago vao tam giac vuong AHC co \(AH^2+CH^2=AC^2\Rightarrow1,8HC+HC^2=16\) 

                           \(\Rightarrow CH^2+1,8CH-16=0\Rightarrow\left(CH-3,2\right)\left(CH+5\right)=0\)

     \(\Rightarrow CH=3,2\) (do BH>0)

\(\Rightarrow AH^2=1,8\cdot CH=5.76\Rightarrow AH=2,4\)

\(BH+HC=BC\Rightarrow BC=1,8+3,2=5\)

ap dung dl pitago ta tinh dc \(AB^2+AC^2=BC^2\Rightarrow AB=3\)

                        

Bình luận (0)
H24
Xem chi tiết
MA
10 tháng 5 2015 lúc 21:53

A B C H D E

a) Vì trong tam giác cân đường cao đông thời là trung tuyến ;trung trực ,...

Nên AH là đường cao đồng thời là trugn tuyến ứng với canh BC

=>HB=HC

b) Ta có HB+HC=BC

=>HB=HC=BC/2=8/2=4cm

Ap dụng định lí Py-ta-go vào tam giác BAH ta có

AH2+BH2=AB2

   AH2=AB2-BH2

  AH2= 52-42

AH2=25-16=9

=>AH=3

C)Xét tam giác vuông BDH và CEH ta có 

HB=HC(theo câu a)

Góc B=C(Vì tam giác ABC cân ở A)

=>tam giác BDH=CEH(ch-gn)

=>HD=HE(tương ứng)

Vậy tam giác HDE có HD=HE nên cân ở H

 

Bình luận (0)
PM
Xem chi tiết
VD
16 tháng 7 2016 lúc 14:36

a, tự tính

b, tcm

c, dùng định lí trong SGK 

Bình luận (0)
H24
Xem chi tiết
BH
17 tháng 7 2017 lúc 12:28

Qqqqqqqqqqqqqqqqq

Bình luận (0)
YN
30 tháng 8 2018 lúc 20:28

Cho tam giác ABC vuông tại A, AH là đường cao. Biết AB=15cm,HC=16cm.Tính BC,AH,HB,AC.

Bình luận (0)
MP
Xem chi tiết
DM
Xem chi tiết
ND
15 tháng 2 2016 lúc 19:17

Bai 1:

Ap dung dinh li Py-ta-go vao tam giac AHB ta co:

AH^2+BH^2=AB^2

=>12^2+BH^2=13^2

=>HB=13^2-12^2=25

Tuong tu voi tam giac AHC

=>AC=20

=>BC=25+16=41

Bình luận (0)