\(\frac{58}{89}\)và \(\frac{36}{53}\)
so sánh
\(\frac{58}{89}và\frac{36}{53}\)
So sánh
\(\frac{58}{89}\frac{36}{53}\)
ta có 58/89 =3074/4717 ; 36/53 = 3204/4717
Vì 3074/4717 <3204/4717 .Nên 58/89<36/53
k đi
so sánh \(\frac{11}{32}và\frac{16}{49}\)b)\(\frac{58}{89}và\frac{36}{53}\)
11/32=0,34375;16/49=0.3265306122
vay 11/32 > 16/49
58/89=0,6516853933;36/53=0,679246283
vay 58/89 < 36/53
so sánh phân số \(\frac{58}{89}và\)\(\frac{36}{53}\)
\(\frac{58}{89}< \frac{36}{53}\)
kb nha!
\(\frac{58}{89}\)=0.651685393
\(\frac{36}{53}\)=0.679245283
vì 0.679245283 > 0.651685393
nên\(\frac{58}{89}\)<\(\frac{36}{53}\)
Ta có :
\(\frac{58}{89}=\frac{58.53}{89.53}=\frac{3074}{4717}\)
\(\frac{36}{53}=\frac{36.89}{53.89}=\frac{3204}{4717}\)
Ta thấy : 3074/4717 < 3204/4747 => 58/89 < 36/53
So sánh :
\(\frac{58}{89}\)và \(\frac{36}{53}\)
Vì 58*53<89*36(3074<3204)
=>58/89<36/53
Ta có 58 x 53 = 3074
mà 36 x 89 = 3204
Vì 3074 < 3204
=) 58/89 < 36/53
so sanh
\(\frac{58}{89}\)&\(\frac{36}{53}\) \(\frac{58}{63}\)&\(\frac{36}{55}\)
\(\frac{58}{89}\)& \(\frac{36}{53}\)
Ta có :
\(\frac{58}{89}\)= \(\frac{58.53}{89.53}\)=\(\frac{3074}{4717}\) ; \(\frac{36}{53}\)=\(\frac{36.89}{53.89}\)=\(\frac{3204}{4717}\)
Vậy \(\frac{58}{89}\)< \(\frac{36}{53}\)
\(\frac{58}{63}\)& \(\frac{36}{55}\)
Ta có:
\(\frac{58}{63}\)=\(\frac{58.55}{63.55}\)=\(\frac{3190}{3465}\) ; \(\frac{36}{55}\)=\(\frac{36.63}{55.63}\)=\(\frac{2268}{3465}\)
Vậy \(\frac{58}{63}\)> \(\frac{36}{55}\)
58/89<36/89
58/63>36/55
So sánh: a) \(\frac{11}{32}\) và \(\frac{16}{49}\) b) \(\frac{58}{89}\)và \(\frac{36}{53}\)
So sánh các phân số sau mà không quy đồng mẫu số
a) \(\frac{12}{47}\) và \(\frac{19}{77}\) b) \(\frac{58}{89}\)và \(\frac{36}{53}\)
\(\frac{12}{47}>\frac{12}{48}=\frac{1}{4}\)
\(\frac{19}{77}< \frac{19}{76}=\frac{1}{4}\)
\(\Rightarrow\frac{12}{47}>\frac{19}{77}\)
\(\frac{58}{89}< \frac{58}{87}=\frac{2}{3}\)
\(\frac{36}{53}>\frac{36}{54}=\frac{2}{3}\)
\(\Rightarrow\frac{58}{89}< \frac{36}{53}\)
so sánh: 58/89 và 36/53; 25/103 và 74/294; \(\frac{2014.2015}{2014.2015+3}\) và \(\frac{2015.2016-2}{2015.2016+1}\)