So Sánh 2 Biểu Thức:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\)
\(B=\frac{2000+2001}{2001+2002}\)
So sánh hai biểu thức A và B cho biết rằng:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) \(B=\frac{2000+2001}{2001+2002}\)
Ta có: B = \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000}{4003}+\frac{2001}{4003}\)
Ta thấy : \(\frac{2000}{2001}>\frac{2000}{4003}\)(1)
\(\frac{2001}{2002}>\frac{2001}{4003}\) (2)
Từ (1) và (2) cộng vế với vế, ta được :
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{4003}+\frac{2001}{4003}\)
hay \(A=\frac{2000}{2001}+\frac{2001}{2002}>B=\frac{2000+2001}{2001+2002}\)
So sánh 2 biểu thức A và B biết rằng:
\(A=\frac{2000+2001}{2001+2002}\)
\(B=\frac{2000+2001}{2001+2002}\)
A = \(\frac{2000+2001}{2001+2002}\)= \(\frac{4001}{4003}\)
B = \(\frac{2000+2001}{2001+2003}=\frac{4001}{4003}\)
vậy A = B
$A=\frac{2000+2001}{2001+2002}$A=2000+20012001+2002
$B=\frac{2000+2001}{2001+2002}$B=2000+20012001+2002
=>A=B
SO SÁNH HAI BIỂU THỨC :
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) \(B=\frac{2000}{2001}+\frac{2001}{2002}\)
Ta xét các phân số trong 2 biểu thức đều bằng nhau :
2000 = 2000 ; 2001 = 2001 ; 2002 = 2002.
Vậy A = B.
Ta xét các phân số trong hai biểu thức bằng nhau nên kết quả của chúng chắc chắn sẽ bằng nhau.
SO SÁNH \(A=\frac{2000}{2001}+\frac{2001}{2002}v\text{à}B=\frac{2000+2001}{2001+2002}\)
Ta có:
B = \(\frac{2000}{2001+2002}\)+ \(\frac{2001}{2001+2002}\)
Vì \(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)
=> \(\left(\frac{2000}{2001}+\frac{2001}{2002}\right)\)> \(\left(\frac{2000}{2001+2002}+\frac{2001}{2001+2001}\right)\)
=> A>B
Vậy A>B
so sánh hai biểu thức A và B biết rằng:
A=\(\frac{2000}{2001}+\frac{2001}{2002}\) B=\(\frac{2000+2001}{2001+2002}\)
A>B vì tử số của B cộng với 2001 và mẫu số cộng thêm 2002
so sánh : A= \(\frac{2000}{2001}+\frac{2001}{2002}\) B= \(\frac{2000+2001}{2001+2002}\)
Ta có:B= \(\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}\)và \(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
Nên A>B
So sánh 2 biểu thức A và B biết rằng:
A= 2000/2001 + 2001/2002
B= 2000 + 2001/ 2001+2002
Ta có:
\(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)(1)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)(2)
Cộng các bất đẳng thức (1) và ( 2) vế với nhau:
Vậy \(\frac{2000}{2001}\)+ \(\frac{2001}{2002}\)> \(\frac{2000+2001}{2001+2002}\)hay A > B.
So sánh 2 biểu thức A và B, biết:
A = 2000/2001 + 2001/2002
B = 2000+2001/ 2001/2002
Trong phần câu hỏi tương tự có đó!
So sánh hai biểu thức A và B biết:
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) Và \(B=\frac{2000+2001}{2001+2002}\)
Giusp mik nhanh nhé!cần gấp!thanks mn
\(B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta thấy \(\frac{2000}{2001+2002}< \frac{2000}{2001}\)
\(\frac{2001}{2001+2002}< \frac{2001}{2002}\)
\(\Rightarrow B< A\)
\(A=\frac{2000}{2001}+\frac{2001}{2002}\) VÀ\(B=\frac{2000+2001}{2001+2002}\)
\(\Leftrightarrow A=\frac{2000}{2001}+\frac{2001}{2002}=\frac{2000+20001}{2001+2002}\) VÀ \(B=\frac{2000+2001}{2001+2002}\)
\(\Rightarrow A=B\)
chắc mk làm sai
B = \(\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Ta có: \(\frac{2000}{2001}>\frac{2000}{2001+2002}\)
\(\frac{2001}{2002}>\frac{2001}{2001+2002}\)
Cộng vế theo vế:
\(\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000}{2001+2002}+\frac{2001}{2001+2002}=\frac{2000+2001}{2001+2002}\)
Hay A > B