Tìm số nguyên dương n để phân số 10n+32/6n+15 có giá trị lớn nhất
Cho phân số B = 10n : 5n -3, a) Tìm n E Z để B có gía trị là số nguyên. b) Tìm giá trị lớn nhất của B
cho phân số A = \(\frac{10n}{5n-3}\)(n thuộc Z)
a) Tìm n để A có giá trị nguyên
b) tìm n để A có giá trị lớn nhất? tìm giá trị ớn nhất đó?
a) \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\Rightarrow\frac{6}{5n-3}\in Z\Rightarrow5n-3\in U\left(6\right)\)
Ta có bảng sau:
5n - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -0,6 | 0 | 0,2 | 0,4 | 0,8 | 1 | 1,2 | 1,8 |
Mà n thuộc Z => n = { 0 ; 1 }
b) Để A lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất => \(\frac{6}{5n-3}\)lớn nhất
=> 5n - 3 nguyên dương nhỏ nhất ; 5n - 3 thuộc ước của 6 và n thuộc Z
=> 5n - 3 = 2 => x = 1 và \(\frac{6}{5n-3}=\frac{6}{2}=3\)
Thay \(3=\frac{6}{5n-3}\)vào \(A=2+\frac{6}{5n-3}\)ta có:
\(A=2+3=5\)
Vậy giá trị lớn nhất của A là 5 khi x = 1
a, Ta có : \(\frac{10n}{5n-3}=\frac{10n-6+6}{5n-3}\)
\(=\frac{10n-6}{5n-3}+\frac{6}{5n-3}\)
\(=2+\frac{6}{5n-3}\)
Để \(\frac{10n}{5n-3}\in Z\Rightarrow2+\frac{6}{5n-3}\in Z\)
\(\Rightarrow\frac{6}{5n-3}\in Z\)
\(\Rightarrow6\)chia hết cho\(5n-3\)
\(\Rightarrow5n-3\inƯ\left(6\right)\)
Ta có bảng sau :
5n-3 | 1 | -1 | 2 | -2 | 3 | -3 |
5n | 4 | 2 | 5 | 1 | 6 | 0 |
n | 0,8 | 0,4 | 1 | 0,2 | 1,2 | 0 |
Vì \(n\in Z\)=> \(n\in\left\{0;1\right\}\)
b, Để A có giá trị lớn nhất thì \(2+\frac{6}{5n-3}\)có giá trị lớn nhất
=>\(\frac{6}{5n-3}\)có giá trị lớn nhất
=> 5n-3 là số nguyên dương bé nhất
=> 5n-3 \(\inƯ\left(6\right)\)
=> n \(\in Z\)
=> 5n - 3 = 2
=> 5n = 5
=> n = 1
Thay n = 1 vào \(\frac{6}{5n-3}\)Ta có :
\(\frac{6}{5\times1-3}=3\)
Thay 3 vào A = \(2+\frac{6}{5n-3}\)ta được
A = 2 + 3 =5
Vậy giá trị lớn nhất của A là 5 tại n = 1
1. Tìm số tự nhiên n để \(P=\frac{-n+2}{n-1}\) là số nguyên.
2. Tìm số tự nhiên n để phân số \(M=\frac{6n-3}{4n-6}\)đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
3 Tìm số tự nhiên có 3 c/s, biết rằng khi chia số đó cho các số 25; 28; 35 thì được các số dư lần lượt là 5; 8; 15.
4 Tìm số tự nhiên x,y sao cho: \(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
5 Tìm số tự nhiên n để phân số \(B=\frac{10n-3}{4n-10}\)đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
GTLN = 16
n = -2
nha bạn chúc bạn học tốt nha
gtln =16
n=-2
chúc bạn hok tốt
GTLN =16
n =-2
các bạn hộ mình nhé
mik cảm ơn
học tốt nhé
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên
=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }
=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }
b. thêm điều kiện n\(\in\)Z
Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n )
Tìm số nguyên n để phân số A=\(\frac{6n-4}{2n-3}\)có giá trị lớn nhất.
Ta có:\(A=\frac{6n-4}{2n-3}=\frac{3\left(2n-3\right)+5}{2n-3}=\frac{3\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=3+\frac{5}{2n-3}\)
Để A có giá trị lớn nhất thì \(\frac{5}{2n-3}\) có giá trị lớn nhất.
\(\Rightarrow2n-3\) có giá trị nhỏ nhất.
Với \(n\le1\Rightarrow2n\le2\Rightarrow2n-3\le-1\Rightarrow\frac{5}{2n-3}< 0\left(L\right)\)
Với \(n>1\Rightarrow2n-3\ge1\Rightarrow\frac{5}{2n-3}\le5\)
Dấu "=" xảy ra khi và chỉ khi n=2.
Vậy \(A_{max}=8\Leftrightarrow n=2\) .
\(A=\frac{6n-4}{2n-3}=\frac{3\left(2n-3\right)+5}{2n-3}=3+\frac{5}{2n-3}\)
A lớn nhất khi \(\frac{5}{2n-3}\)lớn nhất
Mà \(5>0\) \(\Rightarrow\) \(2n-3\) là số nguyên dương nhỏ nhất
\(\Rightarrow\) \(2n-3=1\) \(\Rightarrow\) \(2n=4\) \(\Rightarrow\) \(n=2\)
\(\Rightarrow\) \(GTLN\) của A là 8 khi n = 2
Study well ! >_<
Ta có :
A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3
a. Để A nguyên thì 13/2n+3∈Z
⇒2n+3∈{−13;−1;1;13}
⇒2n∈{−16;−4;−2;10}
⇒n∈{−8;−2;−1;5}
b. Bổ sung điều kiện : A thuộc Z
Để A max thì 13/2n+3 min
⇔2n+3 max ∈ Z
Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1
⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)
Vậy A max = 16 <=> n = -2
max là giá trị lớn nhất
min là giá trị nhỏ nhất
HT
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
ta có
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
Để A nguyên thì 2n+3 phải là ước của 13 nên
\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)
Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)
Cho phân số M = 6n - 1 / 3n+2 (n thuộc Z)
a, tìm số nguyên n để M có giá trị nguyên
b, tìm số nguyên n để M có giÁ TRỊ NHỎ NHẤT . tìm giá trị nhỏ nhất đó
mk giải câu a thui nha
để \(\frac{6n-1}{3n+2}\)là số nguyên thì:
(6n-1) sẽ phải chia hết cho(3n+2)
mà (3n+2) chja hết cho (3n+2)
=> 2(3n+2) cx sẽ chia hết cho (3n+2)
<=> (6n+4) chia hết cho (3n+2)
mà (6n-1) chia hết cho (3n+2)
=> [(6n+4)-(6n-1)] chja hết cho (3n+2)
(6n+4-6n+1) chja hết cho 3n+2
5 chia hết cho3n+2
=> 3n+2 \(\in\){1,5,-1,-5}
ta có bảng
3n+2 | 1 | 5 | -1 | -5 |
3n | 3 | 7 | 1 | -3 |
n | 1 | -1 |
vậy....
bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!