Tính nhanh:
\(\frac{2005\times2004-1}{2003\times2005+2004}\)
Tính nhanh :
\(\frac{2005\times2004-1}{2003\times2005+2004}\)
\(\frac{2005x2004-1}{2003x2005+2004}\)=\(\frac{4018019}{4018019}\)= 1
Bài giải
\(\frac{2005\text{ x }2004-1}{2003\text{ x }2005+2004}=\frac{2005\text{ x }2004-1}{2003\text{ x }2005+2005-1}=\frac{2005\text{ x }2004-1}{2005\text{ x }2004-1}=1\)
\(\frac{2005\times2004-1}{2003\times2005+2004}\)\(=\)\(\frac{2005\times\left(2003+1\right)-1}{2003\times2005+2004}\)\(=\)\(\frac{2005\times2003+2005-1}{2003\times2005+20042}\)\(=\)\(\frac{2005\times2003+2004}{2003\times2005+2004}\)\(=\)1
\(\frac{2005\times2004-1}{2003\times2005+2004}=?\)
\(\frac{2005\times2004-1}{2003\times2005+2004}=\frac{2005\times2003+2005-1}{2003\times2005+2004}=\frac{2005\times2003+2004}{2003\times2005+2004}=1\)
BÀI 1 : So sánh
A = \(\frac{17^{18}+1}{17^{19}+1}\)và B = \(\frac{17^{17}+1}{17^{18}+1}\) So sánh A và B
\(\frac{n}{n+3}\)và \(\frac{n+1}{n+2}\)
\(\frac{2003\times2004-1}{2003\times2004}\)và \(\frac{2004\times2005-1}{2004\times2005}\)
Tính nhanh giá trị của biểu thức :
\(\frac{2004\times2007+6}{2005\times2005+2009}\)
\(\frac{2004\times2007+6}{2005\times2005+2009}\)
\(=\frac{2004\times2007-2007+6}{2005\times2005+2009}\)
\(=\frac{2005\times2005+2005+2005-2007+6}{2005\times2005+2009}\)
\(=\frac{2005\times2005+2009}{2005\times2005+2009}=1\)
Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
Tính :
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
Ta có:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)
\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
TINH NHANH : \(\frac{2004\times2007+6}{2005\times2005+2009}=?\)
Ta có: \(\frac{2004\cdot2007+6}{2005\cdot2005+2009}=\frac{\left(2005-1\right)\cdot2007+6}{2005\cdot2005+2009}=\frac{2005\cdot2007-1\cdot2007+6}{2005\cdot2005+2009}=\frac{2005\cdot2007-2007+6}{2005\cdot2005+2009}\)
\(=\frac{\text{2005 x (2005 + 2) - 2007 + 6}}{\text{2005 x 2005 + 2009}}=\frac{\text{2005 x 2005 + 2005 x 2 - 2007 + 6}}{\text{2005 x 2005 + 2009}}=\frac{\text{2005 x 2005 + 4010 - 2007 + 6}}{\text{2005 x 2005 + 2009}}=\text{ }\frac{\text{2005 x 2005 + 2009}}{\text{2005 x 2005 + 2009}}=1\)
1, Tính : P = \(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
2,Biết : 13 + 23 + .......+103 = 3025
Tính S = 23 + 43 + 63 + ....+ 203
Bài 1:
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)
\(\Rightarrow P=\frac{-7}{15}\)
Vậy \(P=\frac{-7}{15}\)
Bài 2:
Ta có: \(S=23+43+63+...+203\)
\(\Rightarrow S=13+10+20+23+...+103+100\)
\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)
\(\Rightarrow S=3025+450\)
\(\Rightarrow S=3475\)
Vậy S = 3475
1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
=> P = \(\frac{1}{5}-\frac{2}{3}\)
P = \(\frac{3}{15}-\frac{10}{15}\)
=> P =\(\frac{-7}{15}\)
2. ta có:
S = 23 + 43 + 63 +...+ 203
=> S = 13 + 10 + 23 + 20 +...+ 103 + 100
=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )
=> S = 3025 + 550
=> S = 3575
Vậy S = 3575
1. \(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2003}+\dfrac{2}{2004}-\dfrac{2}{2005}}{\dfrac{3}{2003}+\dfrac{3}{2004}-\dfrac{3}{2005}}\)
=\(\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{5\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}-\)\(\dfrac{2\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}{3\cdot\left(\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}\right)}\)
=\(\dfrac{1}{5}-\dfrac{2}{3}\)
=\(-\dfrac{7}{15}\)
Tính bằng cách thuận tiện nhất:
\(y\frac{2006\times2005-1}{2004\times2006+2005}\)
y=\(\frac{2006x2005-1}{2004x2006+2005}=\frac{2006x2005-1}{\left(2005-1\right)x2006+2005}=\frac{2006x2005-1}{2005x2006-2006+2005}=\frac{2006x2005-1}{2005x2006-1}=1\)