Những câu hỏi liên quan
HB
Xem chi tiết
NQ
Xem chi tiết
SH
19 tháng 4 2015 lúc 20:38

Dấu < nhé!

Bình luận (0)
LS
2 tháng 5 2016 lúc 21:29

2014+2015+2016/2015+2016+2017<2014/2015+2015/2016+2016/2017

Bình luận (0)
NL
4 tháng 2 2017 lúc 10:26

dấu = đấy

Bình luận (0)
DW
Xem chi tiết
PA
1 tháng 9 2016 lúc 12:09

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

Bình luận (0)
HC
Xem chi tiết
VK
14 tháng 4 2016 lúc 18:26

Ta có : P = 2014/2015 + 2015/2016 + 2016/2017 < 2014/(2015+2016+2017) + 2015/(2015+2016+2017) + 2016/(2015+2016+2017) = Q

Suy ra : P < Q

Vậy P < Q.

Bình luận (0)
ZZ
14 tháng 4 2016 lúc 18:19

Ta thấy:\(\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2017}\)>\(\frac{2014+2015+2016}{2015+2016+2017}\)
Vậy     :P>Q

Bình luận (0)
H24
14 tháng 4 2016 lúc 18:24
  
  
  

bang nhau ban oi

Bình luận (0)
NH
Xem chi tiết
QT
1 tháng 5 2016 lúc 9:26

1-1/2015 + 1-1/2016

=(1+1)-(1/2016+1/2015)

=2-4031/4062240

2015+2016/2016+2017

=4031/4033

2-4031/4062240>1

4031/4033<1

vậy 2014/2015 + 2015/2016 > 2015+2016/2016+2017

Bình luận (0)
DT
Xem chi tiết
H24
30 tháng 4 2016 lúc 15:42

=(2014/2014)+(2015+2015)+(2016/2016)+(2017+2017)

=1+1+1+1

=4

vậy A=4 (4=4)

Bình luận (0)
LP
Xem chi tiết
CL
Xem chi tiết
H24
16 tháng 3 2017 lúc 14:52

M~1+1+1=3

N~1

=> M>N

Bình luận (0)
OS
16 tháng 3 2017 lúc 14:55

m=n m>n m<n 1 trong 3 chắc chắn đúng ahihi =)))
 

Bình luận (0)
LT
Xem chi tiết
MV
28 tháng 4 2017 lúc 17:24

\(A=\dfrac{2014}{2015}+\dfrac{2015}{2016}+\dfrac{2016}{2017}+\dfrac{2017}{2014}\\ =1-\dfrac{1}{2015}+1-\dfrac{1}{2016}+1-\dfrac{1}{2017}+1+\dfrac{1}{2014}+\dfrac{1}{2014}+\dfrac{1}{2014}\\ =\left(1+1+1+1\right)+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\\ =4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]\)

\(\dfrac{1}{2015}< \dfrac{1}{2014}\), \(\dfrac{1}{2016}< \dfrac{1}{2014}\), \(\dfrac{1}{2017}< \dfrac{1}{2014}\)

\(\Rightarrow\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)< 0\\ \Rightarrow-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\\>0\\ \Rightarrow4+\left[-\left(\dfrac{1}{2015}-\dfrac{1}{2014}+\dfrac{1}{2016}-\dfrac{1}{2014}+\dfrac{1}{2017}-\dfrac{1}{2014}\right)\right]>4\)

Bình luận (0)