hãy chứng tỏ rằng tích của 3 chữ số liên tiếp luôn chia hết cho 3
Bài toán vui: - Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3 - Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
Bài toán vui:
- Hãy chứng tỏ rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
- Hãy chứng tỏ rằng tích của ba số tự nhiên liên tiếp luôn chia hết cho 6
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
chứng tỏ rằng
a)tổng của 3 chữ số liên tiếp là một chữ số chia hết cho 3
b)tổng của 4 chữ số liên tiếp là một chữ số không chia hết cho 4
c) tích của 2 chữ số liên tiếp luôn chia hết cho 2
d) tích của 3 chữ số liên tiếp luôn chia hết cho 3
TL :
Tham khảo tại : https://olm.vn/hoi-dap/detail/82541634980.html
Hok tốt
a)Gọi 3 số tự nhiên liên tiếp là:1;a+1;a+2 (a thuộc N)
Tổng 3 số tự nhiên liên tiếp là:
S=a+a+1+a+2
=3a+3
Vì 3 chia hết cho 3 =>3a+a chia hết cho 3
hay S chia hết cho 3
Vậy_______________
Bạn tự kết luận nhé!
b)Tương tự câu a
c)Gọi 2 số tự nhiên liên tiếp là:a;a+1 (a thuộc N)
Tích 2 số tự nhiên liên tiếp là:
T=a(a+1)
Vì a thuộc N nên a có dạng:2k hoặc 2k+1
+)Nếu a=2k+1 thì a+1=2k+1+1=2k+2 chia hết cho 2 (1)
+)Nếu a=2k thì a chia hết cho 2 (2)
Từ (1),(2)
=>T chia hết cho 2
Vậy ____________________________
d)Tương tự,có 3 trường hợp
chứng tỏ rằng
a)Tổng của 4 số liên tiếp là một số không chia hết cho 4
b) tích của 3 chữ số tự nhiên liên tiếp luôn chia hết cho 3
a) Gọi 4 số liên tiếp là a, a + 1, a + 2, a+3
Có: a + a + 1 + a + 2 + a + 3 = 4a + 6 chia 4 dư 2
=> đpcm
b) Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2
Có: (a+1)a(a+2) (1). Với a = 3k thì tích (1) chia hết cho 3.
Với a = 3k + 1 thì a + 2 chia hết cho 3 => (1) chia hết cho 3
Với a = 3k = 2 thì a + 1 chia hết cho 3 => (2) chia hết cho 3
Vậy a(a+1)(a+2) luôn chia hết cho 3 => đpcm.
a)chứng tỏ rằng tổng của tất cả các số có 3 chũ số là 1 số vừa chia hết 2 và 5
B)chứng tỏ rằng tích 3 chữ số tự nhiên liên tiếp luôn chia hết cho 2 và 3
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
Hãy chứng tỏ rằng tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
Good lucky!
Gọi 3 số tự nhiên liên tiếp đó là a, a+1, a+2
Ta có tích sau
a.(a+1).(a+2)=a(1+2)=4.3
=> tích của 3 số tự nhiên liên tiếp chia hết cho 3
k mik nha
Gọi 3 số tự nhiên liên tiếp là n ; n + 1 ; n + 2
Xét các giá trị là số tự nhiên
=> có 2 trường hợp
Th1 : n là số lẻ (n = 2k + 1 với k thuộc N)
=> n + n + 1 + n + 2
= 2k + 1 + 2k + 1 + 1 + 2k + 1 + 2
= 6k + (1 + 1 + 1 + 1 + 2)
= 6k + 6
= 3(2k + 2) chia hết cho 3 (1)
Với n là số chẵn (n = 2k với k thuộc N)
=> 2k + 2k + 1 + 2k + 2
= 6k + 3
= 3.(2k + 1) chia hết cho 3 (2)
Từ (1) và (2)
=> Với mọi n thuộc N , 3 số tự nhiên liên tiếp luôn chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là n ; n + 1 ; n + 2
Xét các giá trị là số tự nhiên
=> có 2 trường hợp
Th1 : n là số lẻ (n = 2k + 1 với k thuộc N)
=> n + n + 1 + n + 2
= 2k + 1 + 2k + 1 + 1 + 2k + 1 + 2
= 6k + (1 + 1 + 1 + 1 + 2)
= 6k + 6
= 3(2k + 2) chia hết cho 3 (1)
Với n là số chẵn (n = 2k với k thuộc N)
=> 2k + 2k + 1 + 2k + 2
= 6k + 3
= 3.(2k + 1) chia hết cho 3 (2)
Từ (1) và (2)
=> Với mọi n thuộc N , 3 số tự nhiên liên tiếp luôn chia hết cho 3
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
Bài 3:
\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8
Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7
⇒ 7040 + a \(\times\) 100 ⋮ 7
1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7
5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)
Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7
⇒ 7048 + a\(\times\) 100 ⋮ 7
1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7
6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)
Nếu b = 4 ta có: \(\overline{7a4b}\) = \(\overline{7a44}\) ⋮ 7
⇒ 7044 + 100a ⋮ 7
1006.7 + 2 + 14a + 2a ⋮ 7
2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)
Kết hợp (1); (2); (3) ta có:
(a;b) = (1;0); (8;0); (4;8); (6;4)
chứng tỏ rằng tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
Ta thấy : 3 số tự nhiên liên tiếp luôn có 1 số là bội của 3
=> Tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
=> đpcm
Chứng tỏ rằng tích 3 số tự nhiên liên tiếp luôn chia hết cho 3