ccho tam giác ABC cân tại A, D là điểm thuộc cạnh BC. chứng minh rằng AB>AD
cho tam giác ABC cân tại A. D là điểm thuộc cạnh BC. chứng minh rằng AB>AD
sai cũng được, giúp tớ với mai tớ nộp rồi
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, lấy điểm E thuộc cạnh AB sao cho AD=AE a) Chứng minh DB=EC b) Gọi O là giao điểm của DB và EC. Chứng minh và là các tam giác cân c) Chứng minh DE / / BC
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AB, E thuộc cạnh AC sao cho AD = AE.
a) Chứng minh BE = CD.
b) Gọi K là giao điểm của BE và CD. Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác góc A.
d) Kéo dài AK cắt BC tại H. Cho AB =5 cm, BC = 6 cm. Tính độ dài AH.
Cho tam giác ABC vuoong cân tại C. AD là đường phân giác cảu tam giác ABC( D thuộc BC ). Gọi I là trung điểm của đoạn AD. Đường thẳng qua I và vuông góc với Ad cắt cạnh AC tại M và cắt cạnh BC kéo dài tại N.
a) Chứng minh: tam giac AIN = tam giác DIN
b)Chứng minh: AD > BC
c) Kẻ CE vuông góc với AB( E thuộc AB) đường thẳng CE cắt AD tại K.
Chứng minh rằng: 3 điểm B, K, M thẳng hàng
Cho Tam giác ABC vuông tại A có AB <AC . Vẽ AH vuông góc với BC (H thuộc BC ),D là điểm trên cạnh AC sao cho AD = AB . Vẽ DE vuông góc với BC (E thuộc BC ) . Chứng minh rằng : Tam giác HAE vuông cân
Cho tam giác ABC cân tại B, góc B<90 độ.Kẻ AD vuông góc với BC,CE vuông góc với AB(D thuộc cạnh BC< E thuộc cạnh AB)
a)Chứng Minh: tam giác BAD = Tam giác BCE
b)Gọi F là giao điểm của AD và CF. Chứng minh BF là tia phân giác của góc ABC
c) Chứng minh FA>AC\2( AC phần 2)
giúp mik nhe iu mn
a)xét ΔBAD và ΔBCE có
\(\widehat{ADB}=\widehat{CEB}=90^o\)
\(\widehat{ABC}\) là góc chung
AB=BC(ΔABC cân tại B)
⇒ ΔBAD=ΔBCE(c.huyền.g.nhọn)
b)xét ΔEBF và ΔDBF có:
BF là cạnh chung
BD=BE(ΔBAD=ΔBCE)
\(\widehat{BDF}=\widehat{BEF}=90^o\)
⇒ΔEBF=ΔDBF(c.huyền.c.g.vuông)
⇒\(\widehat{EBF}=\widehat{DBF}\)(2 góc tương ứng)
hay BF là phân giác của \(\widehat{ABC}\)(đ.p.cm)
c)xét ΔABF và ΔCBF có:
AC=BC(ΔABC cân tại B)
BF là cạnh chung
\(\widehat{EBF}=\widehat{DBF}\)(ΔEBF=ΔDBF)
⇒ΔABF=ΔCBF(c-g-c)
⇒FA=FC(2 cạnh tương ứng)
xét ΔAFC có:
FA+FC>AC(bất đẳng thức tam giác)
mà FA=FC⇒FA>\(\dfrac{AC}{2}\)(đ.p.cm)
Cho tam giác ABC vuông tại A và AB <AC. Tia phân giác của góc ABC cắt cạnh AC tại D. Kẻ DE vuông góc với BC (điểm E thuộc BC).
a) Chứng minh rằng: Hai tam giác ABD và EBD bằng nhau;
b) Giải thích vì sao tam giác ADE là tam giác cân?
c) Chứng minh: 2.AD>AE;
d) Tia ED cắt tia BA tại F. Chứng minh: BD vuông góc với CF
a) Xét ABD và EBD có
BD cạnh chung
BAD=BED(=90)
ABD=EBD(vì BD là tia phân giác của B)
b ko biet
c) vì theo ý b) ADE là tam giác cân tại D nên theo py-ta-go AD+DE=AE
Nên AE>AD
(sai đầu bài rồi)
b)Vì theo ý a) BAD=BED và BD là tia phân giác của B. Nên ADE là tam giác cân
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC ( H thuộc BC). Tia phân giác ^HAC cắt BC tại D. Lấy điểm E trên cạnh AB sao cho BE=BH.a, Chứng minh rằng: Δ BAD cân tại B.b, Chứng minh rằng: EH // AD
Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, lấy điểm E thuộc cạnh AB sao cho AD=AE
a/Chứng minh DB=EC
b/Gọi O là giao điểm của DB và EC . Chứng minh tam giác OBC và tam giác ODE là các tam giác cân
c/Chứng minh DE // BC
a) Xét △ABD và △ACE có:
AB = AC (gt)
\(\widehat{A}\) chung
AD = AE (gt)
\(\Rightarrow\)△ABD = △ACE (c.g.c)
\(\Rightarrow\)DB = EC (cặp cạnh tương ứng)
b) Ta có :△ABD = △ACE
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) (cặp góc tương ứng)
Mà \(\widehat{ABC}=\widehat{ACB}\) ( △ABC cân tại đỉnh A)
\(\Rightarrow\widehat{ABC}-\widehat{B_1}=\widehat{ACB}-\widehat{C_1}\)
\(\Rightarrow\widehat{OBC}=\widehat{OCB}\)
\(\Rightarrow\)△OBC cân tại đỉnh O
\(\Rightarrow\)OB = OC
Ta có: DB = EC (cmt)
OB = OC
\(\Rightarrow\)DB - OB = EC - OC
\(\Rightarrow\)OE = OD
\(\Rightarrow\)△ODE cân đỉnh O (ĐPCM)
c) △OBC cân tại đỉnh O
\(\Rightarrow\)\(\widehat{OCB}=\frac{180^o-\widehat{BOC}}{2}\)
△ODE cân tại đỉnh O
\(\Rightarrow\widehat{DEO}=\frac{180^o-\widehat{DOE}}{2}\)
Mà \(\widehat{BOC}=\widehat{DOE}\)(đối đỉnh)
\(\Rightarrow\widehat{DEO}=\widehat{OCB}\)
Vì 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\)DE // BC (ĐPCM)