Tìm x, y \(\in\)N thỏa: 9x2+5=y(y+1)
Tìm x,y \(\in\) N thỏa
\(9x^2+5=y.\left(y+1\right)\)
1. Tìm x, y \(\in\) N thỏa mãn: 5( x - 2019 )2 = 14 - y2
\(5\left(x-2019\right)^2\ge0\Rightarrow14-y^2\le0\Rightarrow y^2\le14\Rightarrow y^2=\left\{0;1;4;9\right\}\left(y\in N\right)\)
Mặt khác, \(5\left(x-2019\right)^2⋮5\Rightarrow14-y^2⋮5\)
Do đó: \(y^2=4\)
Ta có: \(5\left(x-2019\right)^2=14-2^2\Rightarrow\left(x-2019\right)^2=2\)
Mà không số tự nhiên nào bình phương bằng 2 nên \(x\in\varnothing\)
Vậy ko có giá trị nào của x,y là số tự nhiên thỏa mãn đề bài.
Cho hệ 9 x 2 − 4 y 2 = 5 log m 3 x + 2 y − log 3 3 x − 2 y = 1 có nghiệm x ; y thỏa mãn 3 x + 2 y ≤ 5. Khi đó giá trị lớn nhất của m là
A. -5
B. log 3 5
C. 5
D. log 5 3
Đáp án C
Ta có: 9 x 2 − 4 y 2 = 5 ⇔ 3 x + 2 y 3 x − 2 y = 5 ⇔ 3 x − 2 y = 5 3 x + 2 y
Khi đó: log m 3 x + 2 y = log 3 3 x − 2 y = 1
⇔ log m 3 x + 2 y − log 3 5 3 x + 2 y = 1
⇔ log m 3 x + 2 y + log 3 3 x + 2 y − log 3 5 = 1 ⇔ log m 3. log 3 3 x + 2 y + log 3 3 x + 2 y = log 3 15 ⇔ log 3 3 x + 2 y 1 + log m 3 = log 3 15
Vì 3 x + 2 y ≤ 5
nên log 3 3 x + 2 y ≤ log 3 5 ⇒ log 3 15 1 + log m 3 ≤ log 3 5
⇔ log 3 15 log 3 5 ≤ 1 + log m 3
⇔ log m 3 ≥ log 5 15 − 1 = log 5 3 ⇔ m ≤ 5.
Cho \(x,y\in N\)thỏa mãn \(x^2+4x+1=5^y\)
a)\(CMR:y\)chẵn
b)Tìm x,y thỏa mãn
1. Tìm các số tự nhiên \(n\in\left(1300;2011\right)\) thỏa mãn \(P=\sqrt{37126+55n}\in N\).
2. Tìm tất cả cặp số tự nhiên \(\left(x;y\right)\) thỏa mãn \(x\left(x+y^3\right)=\left(x+y\right)^2+7450\).
3. Tính chính xác giá trị của biểu thức sau dưới dạng phân số tối giản :
\(A=\dfrac{\left(1^4+4\right)\left(5^4+4\right)\left(9^4+4\right)...\left(2005^4+4\right)\left(2009^4+4\right)}{\left(3^4+4\right)\left(7^4+4\right)\left(11^4+4\right)...\left(2007^4+4\right)\left(2011^4+4\right)}\)
4. Tìm tất cả các ước nguyên tố của : \(S=\dfrac{2009}{0,\left(2009\right)}+\dfrac{2009}{0,0\left(2009\right)}+\dfrac{2009}{0,00\left(2009\right)}\).
1) Cho x,y \(\in Z\); x,y > 1 thỏa mãn : \(4x^2y^2-7x+7y\)là số chính phương. CMR: x=y
2) Cho a,b,c \(\in Z\)thỏa mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right).CMR:\)ab+bc+ca; ab,bc,ca đều là các số chính phương.
3) CMR: \(\forall n\in N\)thì số an = \(2^n+3^n+5^n+6^n\)đều không là số lập phương
4) Tìm \(x,y\in Z\)thỏa mãn \(x^3-y^3=285\left(x^2+y^2\right)\)
5) Cho \(a,b,c\in Z\)thỏa mãn \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\in Z\). CMR abc là 1 số lập phương
6) Tìm x,y \(\in Z\), \(x\le y\)để \(1+4^x+4^y\)là số chính phương
Tìm x,y\(\in\)N thỏa:
\(9x^2+5=y\left(y+1\right)\)
ai lm nhanh và đúng mình tik 10 tik
Tìm \(x,y\in N\)thỏa mãn \(x^2+y^2\cdot\left(x-y+1\right)-\left(x-1\right)\cdot y=22\)
1.Cho |x|< hoặc = 3;|y|< hoặc bằng 5 với \(x,y\in Z\).Biết x-y=2.Tìm x và y
2.Tìm cặp số nguyên x,y thỏa mãn
a)|2x-6|+|y-5|=0
b)|x|+|y|=3
c)|x+1|+|y-2|=2
1.
vì \(x-y=2\)
\(\Rightarrow y=x-2\)
\(\Rightarrow x>y\)
vì \(\left|y\right|\le5\)
\(\Rightarrow-5\le y\le5\)
Ta có: \(\left|x\right|\le3\)
⇒ xmin=−3 và xmax=3
⇒ ymin=−5 và ymax=1
\(\Rightarrow-5\le y\le1\text{( đúng)}\)
\(\Rightarrow\text{Với }-3\le x\le3\)thì \(y=x-2\)