\(f\left(2015\right)xf\left(\frac{1}{2015}\right)=2015.Tinhf\left(2015\right)\)
tinh \(G=\frac{\left(1+\frac{2015}{1}\right)+\left(1+\frac{2015}{2}\right)+...+\left(1+\frac{2015}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)+....+\left(1+\frac{1000}{2015}\right)}\)
Tính tổng gồm 2014 số hạng:
\(f\left(\frac{1}{2015}\right)+f\left(\frac{2}{2015}\right)+....+f\left(\frac{2014}{2015}\right)\)
Trong đó \(f\left(x\right)=\frac{100^x}{100^x+10}\)
ai làm đg tick nha
Cho hàm số \(f\left(x\right)=\frac{100^x}{100^x+10}\)
Tính tổng 2014 số hạng \(f\left(\frac{1}{2015}\right)\) + \(f\left(\frac{2}{2015}\right)\)+ \(f\left(\frac{3}{2015}\right)\)+ ... + \(f\left(\frac{2014}{2015}\right)\)
+) Nhận xét: Nếu a + b = 1 thì f(a) +f(b) = 1. Thật vậy:
Ta có: f(a) + f(b) = \(\frac{100^a}{100^a+10}+\frac{100^b}{100^b+10}=\frac{100^{a+b}+10.100^a+100^{b+a}+10.100^b}{\left(100^a+10\right)\left(100^b+10\right)}\)
\(=\frac{100^1+10.\left(100^a+100^b\right)+100^1}{100^{a+b}+10.\left(100^a+100^b\right)+100}=\frac{200+10.\left(100^a+100^b\right)}{200+10.\left(100^a+100^b\right)}=1\)
+) Áp dụng:
\(f\left(\frac{1}{2015}\right)\) + \(f\left(\frac{2}{2015}\right)\)+ \(f\left(\frac{3}{2015}\right)\)+ ... + \(f\left(\frac{2014}{2015}\right)\)
= \(\left[f\left(\frac{1}{2015}\right)+f\left(\frac{2014}{2015}\right)\right]+\left[f\left(\frac{2}{2015}\right)+f\left(\frac{2013}{2015}\right)\right]+...+\left[f\left(\frac{1007}{2015}\right)+f\left(\frac{1008}{2015}\right)\right]\)
= 1 + 1 + ...+ 1 (có 2014 : 2 = 1007 số 1)
= 1007
Cho 3 số dương x , y , z thỏa mãn điều kiện :
\(xy+yz+zx=2015\) và :
\(P=x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}+y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}+z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}}\)
Chứng minh rằng P không phải là số chính phương .
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
cho f(x)=\(\frac{100^x}{100^x+10}\)
tính tổng 2004 số hạng \(f\left(\frac{1}{2015}\right)\)+\(f\left(\frac{2}{2015}\right)+...+f\left(\frac{2014}{2015}\right)\)
\(A=-\frac{1}{2}\left(17,5-7,5\right)-\frac{2015}{2016}\left(2018-2\right)\)
=> \(A=-\frac{1}{2}\left(10\right)-\frac{2015}{2016}\left(2016\right)=-5-2015=-2020\)
Trả lời :
- 2 bn kia ở trong câu hỏi này có ai làm đúng đâu.
- Chúc bạn học tốt !
- Tk cho mk nha !
\(\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}+1\right)\left(\frac{2105}{2016}+\frac{2016}{2017}+\frac{7}{22}\right)-\left(\frac{1}{2}+\frac{2015}{2016}+\frac{2016}{2017}\right)\left(\frac{2015}{2016}+\frac{2016}{2017}+\frac{7}{22}+1\right)\)
câu 1:biến đổi (x^2 + 3x + 1)^2 - 1 thành tích
câu 2: biến đổi (x^2 - 8)^2 +36 thành tích
câu 3: cho \(f\left(x\right)=\frac{100^x}{100^x+10}\)
tính tổng 2004 số hạng \(f\left(\frac{1}{2015}\right)+f\left(\frac{2}{2015}\right)+...+f\left(\frac{2014}{2015}\right)\)
câu 1: \(=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+3\right)\left(x+1\right)\left(x+2\right)\)
mình chỉ làm đc câu 1 thôi. hì hì ^^ cũng cho đúng nha :)
Hãy so sánh:\(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right).\left(\frac{1}{4}-1\right)...\left(\frac{1}{2014}-1\right)vàB=\left(-1\right)^{2015}:2015\)
\(A=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2013}{2014}\right)=\left(-\frac{1}{2014}\right)\) (Do các thừa số đều âm và A có (2014-2)+1=2013 thừa số nên A mang giá trị âm)
\(B=-\frac{1}{2015}\)
=> A<B (|A|>|B|)