Những câu hỏi liên quan
EC
Xem chi tiết
GH
Xem chi tiết
NN
8 tháng 1 2017 lúc 21:37

ko bít làm à

Bình luận (0)
GH
8 tháng 1 2017 lúc 21:40

k bik nên mới hỏi

Bình luận (0)
GH
Xem chi tiết
TT
11 tháng 1 2017 lúc 15:24

Ta có: \(\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)\\ =\left(xy+\left(x+y+z\right)z\right)\left(yz+\left(x+y+z\right)x\right)\left(zx+\left(x+y+z\right)y\right)\\ =\left(xy+zx+zy+z^2\right)\left(yz+x^2+xy+xz\right)\left(zx+xỹ+y^2+yz\right)\\ =\left(y+z\right)\left(x+z\right)\left(x+z\right)\left(y+x\right)\left(z+y\right)\left(x+y\right)\\ =\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2\\ \Rightarrow\frac{\left(xy+2016z\right)\left(yz+2016z\right)\left(zx+2016y\right)}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =\frac{\left(y+z\right)^2\left(x+y\right)^2\left(z+x\right)^2}{\left(x+y\right)^2\left(y+z\right)^2\left(z+x\right)^2}\\ =1\)

Bình luận (0)
H24
Xem chi tiết
DL
10 tháng 7 2016 lúc 23:49

Thay x = 0; y = -z = 1, thỏa mãn đề bài nhưng:

02016 + 12016 + (-1)2016 không bằng ( 0 + 1 - 1)2016

=> xem lại đề.

Bình luận (0)
NN
Xem chi tiết
HN
2 tháng 11 2016 lúc 17:41

Ta có \(x^2+y^2+z^2\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z 

Bạn áp dụng vào nhé.

Bình luận (0)
LH
2 tháng 11 2016 lúc 18:29

Ngọc cứ làm tắt thì vài người hiểu chứ vài bạn không biết đâu :)

Ta có :

\(x^2+y^2+z^2=xy+xz+yz\)

\(\Rightarrow x^2+y^2+z^2-xy-xz-yz=0\)

\(\Rightarrow2\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)

\(\Rightarrow x^2+y^2-2xy+y^2+z^2-2yz+x^2+z^2-2xz=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

Mà \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(x-z\right)^2\ge0\\\left(y-z\right)^2\ge0\end{cases}}\)

\(\Rightarrow x-y=x-z=y-z=0\)

\(\Rightarrow x=y=z\)

\(\Rightarrow x^{2016}=y^{2016}=z^{2016}\)

Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2016}\)

\(\Rightarrow x^{2016}=y^{2016}=z^{2016}=\frac{3^{2016}}{3}=3^{2015}\)

\(\Rightarrow x=y=z=\sqrt[2016]{3^{2015}}=\sqrt[2016]{\frac{3^{2016}}{3}}=\frac{3}{\sqrt[2016]{3}}\)

Bình luận (0)
NN
2 tháng 11 2016 lúc 20:13

Mình chưa học cách làm như thế. Chẳng hiểu gì hết. các bạn có thể làm theo cách khác không?

Bình luận (0)
PA
Xem chi tiết
KK
4 tháng 4 2017 lúc 11:44

\(VT=\sqrt{\dfrac{yz}{x^2+xy+yz+xz}}+\sqrt{\dfrac{xy}{y^2+xy+yz+xz}}+\sqrt{\dfrac{xz}{z^2+xy+yz+xz}}\)

\(VT=\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}+\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{yz}{\left(x+y\right)\left(x+z\right)}}\le\dfrac{\dfrac{y}{x+y}+\dfrac{z}{x+z}}{2}\\\sqrt{\dfrac{xy}{\left(y+z\right)\left(x+y\right)}}\le\dfrac{\dfrac{x}{x+y}+\dfrac{y}{y+z}}{2}\\\sqrt{\dfrac{xz}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{z}{y+z}}{2}\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{x+z}+\dfrac{x}{x+z}\right)}{2}\)

\(\Rightarrow VT\le\dfrac{\dfrac{x+y}{x+y}+\dfrac{y+z}{y+z}+\dfrac{x+z}{x+z}}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{y^2+2016}}+\sqrt{\dfrac{xz}{z^2+2016}}\le\dfrac{3}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(x=y=z=4\sqrt{42}\)

Bình luận (9)
LF
4 tháng 4 2017 lúc 17:16

Sửa đề:\(\sqrt{\dfrac{yz}{x^2+2016}}+\sqrt{\dfrac{xy}{z^2+2016}}+\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{3}{2}\)

Giải

Ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{z^2+xy+xz+yz}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{\dfrac{xy}{z^2+2016}}=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\sqrt{\dfrac{yz}{x^2+2016}}\le\dfrac{1}{2}\left(\dfrac{y}{x+y}+\dfrac{z}{x+z}\right);\sqrt{\dfrac{xz}{y^2+2016}}\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{z}{y+z}\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(\Sigma\sqrt{\dfrac{xy}{z^2+2016}}\le\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}\right)=\dfrac{1}{2}\Sigma\left(\dfrac{x}{x+z}+\dfrac{z}{x+z}\right)=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=4\sqrt{42}\)

Bình luận (0)
LF
3 tháng 4 2017 lúc 22:12

xí bài này nhé, lát nữa hoặc mai giải

Bình luận (0)
TA
Xem chi tiết
LT
2 tháng 8 2019 lúc 18:25

Ta có: x2+y2+z2=xy+yz+zx (gt)

\(\Leftrightarrow\)2x2+2y2+2z2=2xy+2yz+2zx

\(\Leftrightarrow\)x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0

\(\Leftrightarrow\)(x-y)2+(y-z)2+(z-x)2=0

\(\Leftrightarrow\)x=y,y=z,z=x

\(\Leftrightarrow\)x=y=z

Khi đó:x2016+y2016+z2016=32017

\(\Leftrightarrow\)3.x2016=32017

\(\Leftrightarrow\)x2016=32016

\(\Leftrightarrow\)x=\(\pm\)3

Vậy:x=y=z=3 hoặc x=y=z=-3

Bình luận (0)
TD
2 tháng 8 2019 lúc 18:28

Ta có : \(x^2+y^2+z^2=xy+yz+xz\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Mà \(x^{2016}+y^{2016}+z^{2016}=3^{2017}\)

\(x^{2016}=y^{2016}=z^{2016}=\frac{3^{2017}}{3}=3^{2016}\)

\(\Rightarrow x=y=z=\sqrt[2016]{3^{2016}}=3\)

Bình luận (0)
AO
Xem chi tiết
NB
Xem chi tiết
HP
19 tháng 6 2016 lúc 15:20

\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(xy+yz+zx=0\)(theo đề) nên \(2\left(xy+yz+zx\right)=0\)

\(\Rightarrow x^2+y^2+z^2=0\)

\(\hept{\begin{cases}x^2\ge0\\y^2\ge0\\z^2\ge0\end{cases}}\) (với mọi x;y;z) nên \(x^2+y^2+z^2\ge0\) (với mọi x;y;z)

Để \(x^2+y^2+z^2=0\) \(\Leftrightarrow\) \(\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}\Leftrightarrow}x=y=z=0\)

Vậy \(A=\left(0-1\right)^{2016}+0^{2017}+\left(0+1\right)^{2018}=\left(-1\right)^{2016}+0+1^{2018}=2\)

Bình luận (0)