Những câu hỏi liên quan
NL
Xem chi tiết
HH
Xem chi tiết
HP
2 tháng 11 2015 lúc 19:51

đặt x/3=y/2=k

=>x=3k;y=2k

6xy=1 =>xy=1/6

=>xy=3k.2k =6.k^2=1/6

=>k^2=1/6:6=1/36=(+1/6)^2

=>k=+1/6

+)k=1/6=>x=1/2=0,5;y=1/3

+)k=-1/6=>x=-1/2=-0,5;y=-1/3

ta có:0.x>y=>x;y là số âm

=>x=-1/2;y=-1/3


 

Bình luận (0)
LC
2 tháng 11 2015 lúc 19:53

\(\frac{x}{3}=\frac{y}{2}=>\frac{x}{3}.\frac{6y}{12}=\frac{y}{2}.\frac{6y}{12}=>\frac{6xy}{36}=\frac{6.y^2}{24}=\frac{1}{36}\)

=>\(6.y^2=\frac{1}{36}.24=\frac{2}{3}=>y^2=\frac{2}{3}:6=\frac{1}{9}=>y=\frac{1}{3},-\frac{1}{3}\)

Với\(y=\frac{1}{3}=>6x=1:\frac{1}{3}=3=>x=3:6=\frac{1}{2}\)

Với\(y=-\frac{1}{3}=>6x=1:\left(-\frac{1}{3}\right)=-3=>x=-3:6=-\frac{1}{2}\)

Vậy \(x=\frac{1}{2},y=\frac{1}{3}\)

 \(x=-\frac{1}{2},y=-\frac{1}{3}\)

Bình luận (0)
DT
Xem chi tiết
TH
18 tháng 10 2015 lúc 8:49

=> xy = 1/6 

chỉ bt tek -_- 

Bình luận (0)
NN
Xem chi tiết
SN
7 tháng 8 2016 lúc 15:46

Đặt:

\(\frac{x}{3}=\frac{y}{2}=k\)

\(\Rightarrow x=k.3\)

\(\Rightarrow y=k.2\)

Thế vào \(6xy=1\), ta có:

\(6.\left(k.3\right).\left(k.2\right)=1\)

\(6.k^2.6=1\)

\(6.k^2=\frac{1}{6}\)

\(k^2=\frac{1}{36}\)

\(\Rightarrow k=\frac{1}{6}\) hoặc \(-\frac{1}{6}\)

Rồi giờ tìm x ; y bạn từ làm nhá

Bình luận (0)
HG
7 tháng 8 2016 lúc 15:46

\(\frac{x}{3}=\frac{y}{2}\)

=> \(\frac{x^2}{3^2}=\frac{y^2}{2^2}=\frac{xy}{3.2}\)

=> \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{6xy}{36}=\frac{1}{36}\)

=> x2 = 1.9 : 36 = \(\frac{1}{4}\) => \(x=\frac{1}{2}\) hoặc \(x=-\frac{1}{2}\)

Bình luận (0)
LP
7 tháng 8 2016 lúc 15:49

Đặt: \(\frac{x}{3}=\frac{y}{2}=k\) 

\(\Rightarrow x=3k\) 

\(y=2k\) 

\(xy=3k.2k=6k^2=\frac{1}{6}\Rightarrow k^2=\frac{1}{6}:6=\frac{1}{36}\Rightarrow k=\frac{1}{6}\)

\(\Rightarrow x=\frac{1}{6}.3=\frac{1}{2}\) 

\(y=\frac{1}{6}.2=\frac{1}{3}\)

Bình luận (0)
HT
Xem chi tiết
CM
11 tháng 5 2019 lúc 19:20

Áp dụng BĐT Cô-si ta có:

\(x^2+y^2+6xy\ge2\sqrt{x^2y^2}+6xy=8xy\Rightarrow8\ge8xy\Rightarrow xy\le1\)

Áp dụng BĐT Cô-si ta có:

\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}=2}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x^2+y^2+6xy=8\end{cases}\Leftrightarrow x=y=1}\)

Vậy \(A_{min}=2\)khi \(x=y=1\)

Bình luận (0)
H24
Xem chi tiết
CN
Xem chi tiết
NA
Xem chi tiết
IK
Xem chi tiết
NP
12 tháng 7 2016 lúc 9:33

\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)

\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn

Bài 2:

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng t/c dãy tỉ số bằng nhau:

Bạn tự làm nha

Bình luận (0)
LH
12 tháng 7 2016 lúc 9:30

Bài 1 :

\(\frac{x}{y}=\frac{5}{3}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )

\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)

\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)

\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)

Mà x ; y cùng dấu nên :

\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)

Bài 2 :

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)

\(\frac{x}{10}=3\Rightarrow x=30\)

\(\frac{y}{15}=3\Rightarrow y=45\)

\(\frac{z}{21}=3\Rightarrow z=63\)

Bình luận (0)