Cho 2 số tự nhiên M và N:
M gồm 2n chữ số 1; N gồm n chữ số 4
Chứng minh rằng: M + N + 1 là số chính phương
Xog òi, mk đổi thành câu khác:
Cho 2 số tự nhiên M và N:
M gồm 2n chữ số 1; N gồm n chữ số 4
CMR: M + N + 1 là số chính phương
copy trong trường hợp này là có người đăng câu hỏi sau đó bạn giải được,bạn đăng lên rồi #Hoàng tử của dải ngân hà# copy bài bạn giải được rồi đăng lên cho người đăng câu hỏi ak
Cho hai số tự nhiên M và N, trong đó số M chỉ gồm 2n chữ số 1, số N chỉ gồm n chữ số 4.Chứng minh rằng: M+N+1 là một số chính phương. (Số chính phương là số bằng bình phương của một số tự nhiên)
biết số chính phương là bình phương của 1 số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh a-b có giá trị là 1 số chính phương
Lời giải:
\(a=\underbrace{111....1}_{2n}; b=\underbrace{22....2}_{n}\)
Đặt \(\underbrace{11...11}_{n}=a\Rightarrow 10^n=9a+1\)
Khi đó:
\(a-b=\underbrace{11...1}_{n}\underbrace{000...0}_{n}+\underbrace{11...1}_{n}-2.\underbrace{11...1}_{n}\)
\(=a(9a+1)+a-2a=9a^2=(3a)^2\) là số chính phương. Ta có đpcm.
Bài 1: Cho a là số gồm 2n chữ số 1, b là số gồm n +1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài 2: Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
bài 3: Cho hai số tự nhiên a và b (với điều kiện a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài 4: Tìm n biết rằng n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài 5: Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương
\(a=111...1=\frac{10^{2n}-1}{9}=\frac{10^{2n}}{9}-\frac{1}{9}\)
\(b=222...2=\frac{2\left(10^n-1\right)}{9}=\frac{2.10^n}{9}-\frac{2}{9}\)
\(a-b=\frac{10^{2n}}{9}-\frac{1}{9}-\frac{2.10^n}{9}+\frac{2}{9}=\left(\frac{10^n}{3}\right)^2-2.\frac{10^n}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\)
\(=\left(\frac{10^n}{3}-\frac{1}{3}\right)^2\) Là 1 số chính phương
biết số chính phương là bình phương của một số nguyên. Cho a là số tự nhiên gồm 2n chữ số 1, b là số tự nhiên gồm n chữ số 2. Chứng minh rằng a-b có giá trị là một số chính phương
CMR số:11....122....2(có 2n chữ số gồm n chứ số 1 và n chữ số 2) là tích của 2 số tự nhiên liên tiếp
1 , Chứng minh rằng với mọi số tự nhiên a , tồn tại số
tự nhiên b sao cho ab + 4 là số chính phương .
2 , Cho a là số gồm 2n chữ số1 , b là số gồm n + 1 chữ số , c là số gồm n chữ số 6 .
Chứng minh rằng a + b + c + 8 là số chính phương .
kết bạn vs mk nha và ai giải nhanh nhất thì mk sẽ tik cho luôn .
Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)
cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng
\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)
phân tích 10^2n = (10^n)^2
10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được
\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)
=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)
=\(\frac{\left(10^n+8\right)^2}{3^2}\)
=\(\left(\frac{10^n+8}{3}\right)^2\)
vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương
bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào
câu b bạn phân tích a = (10000...0( có 2n cs 0) -1)/9
ph b và c tương tự trong đó c=(10000..0 ( có n cs 0) -1)/9*6
Cho k E N*.Số tự nhiên a gồm 2k chữ số 1 và số tự nhiên b gồm k chữ số 2 .Chứng minh a-b là 1