Tìm \(ƯCLN_{\left(45;60\right)}\)
Tìm phân số \(\frac{105}{140}\) biết rằng \(ƯCLN_{\left(a,b\right)}=19\).
Tìm thương của các phép chia sau:
a) \(\left( { - 2020} \right):2\)
b) \(64:\left( { - 8} \right)\)
c) \(\left( { - 90} \right):\left( { - 45} \right)\)
d) \(\left( { - 2121} \right):3\)
Cách 1:
a) \( - 2020 = 2.\left( { - 1010} \right)\) nên \(\left( { - 2020} \right):2 = - 1010\)
b) \(64 = \left( { - 8} \right).\left( { - 8} \right) \Rightarrow 64:\left( { - 8} \right) = - 8\)
c) \( - 90 = \left( { - 45} \right).2 \Rightarrow \left( { - 90} \right):\left( { - 45} \right) = 2\)
d) \( - 2121 = 3.\left( { - 707} \right) \Rightarrow \left( { - 2121} \right):3 = - 707\)
Cách 2:
a) \( - 2020 :2=-(2020:2)= - 1010\)
b) \(64:(-8)=-(64:8) = - 8\)
c) \( -90:(-45)=90:45= 2\)
d) \( - 2121 :3=-(2121:3)= - 707\)
tìm x:
\(x\left(x+2\right)=\dfrac{45}{x+4}\)
\(\dfrac{1}{x^2+2x-3}=\dfrac{1}{\left(x+1\right)^2}+\dfrac{1}{48}\)
BT9: Tìm x biết
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\)
\(10,\left(x+3\right)^2-x^2=45\)
\(11,\left(5x-4\right)^2-49x^2=0\)
\(12,16\left(x-1\right)^2-25=0\)
\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)
\(10,\left(x+3\right)^2-x^2=45\)
\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)
Vậy \(S=\left\{6\right\}\)
\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)
\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)
a) Tìm tập hợp các số nguyên x, biết rằng\(4\dfrac{5}{9}:2\dfrac{5}{18}-7< x< \left(3\dfrac{1}{5}:3,2+4,5.1\dfrac{31}{45}\right):\left(-21\dfrac{1}{2}\right)\)
b) tìm x, biết \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+\left|x+\dfrac{1}{12}\right|+\left|x+\dfrac{1}{20}\right|+....+\left|x+\dfrac{1}{110}\right|-11x\)
c)Tính gt biểu thức \(C=2x^3-5y^3+2015\) tại x,y thỏa mãn \(\left|x-1\right|+\left(y+2\right)^{20}=0\)
tìm GTLN hoặc GTNN
a,\(\frac{196}{\left|x\right|+197}\) b,\(\frac{45}{\left(x-2\right)^2-15}\) c,\(\frac{-45}{\left(x-2\right)^2-15}\)
Tìm x, y, z sao cho A = \(\left(2xy^2\right)^{10}+\left(3y^2z^4\right)^{45}\)có giá trị bằng 0
tìm x, biết:
\(\left(\frac{5}{12}+\frac{-5}{7}+\frac{-22}{45}+\frac{7}{12}+\frac{-23}{45}\right).\)I x I -9 = - 2
\(\left(\frac{5}{12}-\frac{5}{7}-\frac{22}{45}+\frac{7}{12}-\frac{23}{45}\right).\left|x\right|-9=-2\)
\(\left(\frac{12}{12}-\frac{5}{7}-\frac{45}{45}\right).\left|x\right|=-2+9\)
\(\left(1-\frac{5}{7}-1\right).\left|x\right|=7\)
\(\frac{-5}{7}.\left|x\right|=7\)
\(\left|x\right|=7:\left(\frac{-5}{7}\right)\)
\(\left|x\right|=\frac{-49}{5}\)
\(\Rightarrow x\in\varnothing\) vì trị tuyệt đối của 1 số luôn dương
Tìm số tự nhiên a,b \(\dfrac{a}{b}=\dfrac{36}{45}\) biết BCNN \(\left(a,b\right)=300\)
Ta có \(\dfrac{a}{b}=\dfrac{36}{45}=\dfrac{4}{5}\Rightarrow a=4k,b=5k\)
BCNN (a,b) =300 mà \(\left(4,5\right)=1\Rightarrow k=300:\left(4.5\right)=15\)
Vậy \(a=4.15=60;b=5.15=75\)