Những câu hỏi liên quan
KM
Xem chi tiết
HH
14 tháng 4 2018 lúc 22:58

Ta có \(\left|x+1\right|\ge0\)với mọi giá trị của x

và \(\left|x-2018\right|\ge0\)với mọi giá trị của x

=> \(\left|x+1\right|+\left|x-2018\right|\ge0\)với mọi giá trị của x

Vậy GTNN của A là 0.

Bình luận (0)
PU
14 tháng 4 2018 lúc 22:41

Gtnn của A  là 2017

Bình luận (0)
SX
Xem chi tiết
PA
13 tháng 1 2016 lúc 21:43

cậu 1 GTNN=1 khi x=0

câu 2 GTLN =12/11 khi x=3/2

Bình luận (0)
H24
13 tháng 1 2016 lúc 21:52

ta co : x^2-3x+5=(x+3/2)^2+11/4  => (x+3/2)^2+11/4 >hoac= 11/4 ; roi ban lay 3 chia cho ca 2 ve ta duoc : 3/(x^2-3x+5) >hoac = 12/11 ;             dau = xay ra =>max=12/11 <=>x=-3/2                                                                                                                                                                                                     chuc ban hoc tot !!!!!

Bình luận (0)
PA
13 tháng 1 2016 lúc 21:58

anh giải sai rồi phải =-3/2

Bình luận (0)
HP
Xem chi tiết
TN
9 tháng 10 2017 lúc 19:29

Ta có: C= -8x + 2x^2 -17 = 2x^2 - 8x -17

= 2(x^2 - 4x) - 17

= 2( x^2 - 2.x.2 + 2^2 - 4 ) -17

= 2( x-2)^2 - 8 -17

= 2( x-2)^2 -25 >= -25

( Vì (x-2)^2 >= 0 với mọi x)

Min C = -25 <=> x-2 = 0 <=> x=2

Bình luận (0)
SX
Xem chi tiết
PN
11 tháng 1 2016 lúc 9:23

\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:

Ta có:

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\) \(x=1\)

Vậy,   \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)

                                 -------------------------------------------------

\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\)  \(\Leftrightarrow\) \(2x+1=0\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

Vậy,   \(B_{max}=4\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

                              ____________________________________

 \(\left(\text{*}\text{*}\right)\)  Tìm giá trị nhỏ nhất của biểu thức sau:

Từ \(A=\frac{x^2+1}{x^2-x+1}\)

\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\)  với mọi  \(x\)

Vì   \(3A\ge2\) nên  \(A\ge\frac{2}{3}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x+1\right)^2=0\)  \(\Leftrightarrow\)  \(x+1=0\)  \(\Leftrightarrow\) \(x=-1\)

Vậy,   \(A_{min}=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=-1\)

Câu b) tự giải

Bình luận (0)
H24
Xem chi tiết
SX
Xem chi tiết
QT
4 tháng 10 2015 lúc 21:46

TC: B=2x2 + 3x + 2

        =2(x2 + \(\frac{3}{2}\)x+1)

        =2\(\left(\left(x^2+2x.\frac{3}{4}+\frac{9}{16}\right)+\frac{7}{16}\right)\)

        =2\(\left(x+\frac{3}{4}\right)^2\)+\(\frac{7}{8}\)

Vì 2\(\left(x+\frac{3}{4}\right)^2\)\(\ge\)0  với mọi x\(\)

\(\Rightarrow\)2\(\left(x+\frac{3}{4}\right)^2\) + \(\frac{7}{8}\)\(\ge\)\(\frac{7}{8}\)

Dấu"=" xảy ra \(\Leftrightarrow\) \(\left(x+\frac{3}{4}\right)^2\)=0

                     \(\Leftrightarrow\)\(x+\frac{3}{4}\)=0

                      \(\Leftrightarrow\)x=\(\frac{-3}{4}\)

Vậy....

Bình luận (0)
SX
Xem chi tiết
SX
Xem chi tiết
H24
5 tháng 10 2015 lúc 14:58

B=2(x^2+3/2x+9/16)+7/8

2(x^2+3/4)^2+7/8

vi 2(x+3/4)^2>=

suy ra B>=7/8

dau bang say ra khu va chi khi  x+3/4=0 suy ra x=-3/4

vay gia tri nho nhat cua bieu thuc B =7/8 khi x=-3/4

d cau d tung tu tao khong doi hoi vi tao phai lam bai tap ve nha ngay mai roi nhe

Bình luận (0)
SX
Xem chi tiết
NV
20 tháng 10 2015 lúc 21:01

a/ \(M=x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+5\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy Min M = 11/4 khi x - 3/2 = 0 => x = 3/2

b/ \(N=-\left(4x^2-\frac{2}{8}x+5\right)\)

\(=-\left[\left(2x\right)^2-2.2x.\frac{1}{16}+\left(\frac{1}{16}\right)^2-\left(\frac{1}{16}\right)^2+5\right]\)

\(=-\left(2x-\frac{1}{16}\right)^2-\frac{1279}{256}\ge-\frac{1279}{256}\)

Vậy Min N = -1279/256 khi 2x - 1/16 = 0 => 2x = 1/16 => x = 1/32

Bình luận (0)