CMR: nếu n+1 và 2n+1 là hai số chính phương thì n chia hết cho 24
CMR: nếu n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24
CMR nếu n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24.
mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn
CMR: nếu n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24
Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4
Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8
Lại có (n + 1) (2n + 1) = 3n + 2
Ta thấy 3n + 2 = 2 (mod3)
Suy ra (n + 1) (2n + 1) = 2 (mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)
Do đó n chia hết cho 3
đặt \(\left\{{}\begin{matrix}2n+1=a^2\\3n+1=b^2\end{matrix}\right.\)(\(a,b\in Z\))
\(\Rightarrow a^2+b^2=5n+2\equiv2\left(mod5\right)\)
số chính phương chia 5 chỉ có thể dư 0;1;4 nên \(a^2\equiv1\left(mod5\right);b^2\equiv1\left(mod5\right)\)\(\Rightarrow2n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\)(1)
giờ cần chứng minh \(n⋮8\)
từ cách đặt ta cũng suy ra \(n=b^2-a^2\)
vì số chính phương lẻ chia 8 dư 1 mà 2n+1 lẻ \(\Rightarrow a^2\equiv1\left(mod8\right)\)hay \(2n\equiv0\left(mod8\right)\)\(\Rightarrow n⋮4\) nên n chẵn \(\Rightarrow b^2=3n+1\)cũng là số chính phương lẻ \(\Rightarrow b^2\equiv1\left(mod8\right)\)
do đó \(b^2-a^2\equiv0\left(mod8\right)\)hay \(n⋮8\)(2)
từ (1) và (2) \(\Rightarrow n⋮40\)(vì gcd(5;8)=1)
Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4
Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8
Lại có (n + 1) (2n + 1) = 3n + 2
Ta thấy 3n + 2 = 2 (mod3)
Suy ra (n + 1) (2n + 1) = 2 (mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)
Do đó n chia hết cho 3
Nếu (n + 1) và (2n + 1) là số chính phương thì n chia hết cho 24
CMR nếu n+1 và 2n+1 là 2 số chính phương thì n chia hết 24
giải nhanh giùm mik nha 2h mik cần r tKS
Bạn tham khảo nhé ^^ http://olm.vn/hoi-dap/question/626962.html
chứng minh rằng nếu n+1 và 2n+1 là 2 số chính phương thì n chia hết cho 24
Giả sử \(n+1=a^2\) ; \(2n+1=b^2\) \(\left(a,b\in N^{\text{*}}\right)\)
Ta có b là số lẻ \(\Leftrightarrow b=2m+1\Rightarrow b^2=4m\left(m+1\right)+1\Rightarrow n=2m\left(m+1\right)\)
=> n chẵn => n + 1 lẻ => a lẻ => a = 2k+1 => \(n+1=\left(2k+1\right)^2=4k\left(k+1\right)+1\Rightarrow n=4k\left(k+1\right)⋮8\)
Vậy n chia hết cho 8
Ta có : \(a^2+b^2=3n+2\equiv2\)(mod 3)
Mặt khác : \(b^2\)chia 3 dư 0 hoặc 1 , \(a^2\)chia 3 dư 0 hoặc 1
=> Để \(a^2+b^2\equiv2\)(mod 3) thì \(a^2\equiv1\)(mod 3) và \(b^2\equiv1\)(mod 3)
\(\Rightarrow b^2-a^2\)chia hết cho 3
Ta có : n = (2n + 1) - (n + 1) = \(b^2-a^2\)chia hết cho 3
Như vậy \(n⋮3,n⋮8\) mà (3,8) = 1
=> \(n⋮24\)
bằng 1 nhé100% là đúng
k cho mình nha
CMR nếu 2n+1 và 3n+1 đều là số chính phương thì n chia hết cho 40.
a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để:
2a + 1 = n^2 (1)
3a +1 = m^2 (2)
từ (1) => n lẻ, đặt: n = 2k+1, ta được:
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1
=> a = 2k(k+1)
vậy a chẵn .
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1
(1) + (2) được:
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1
=> 5a = 4k(k+1) + 4p(p+1)
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8
ta cần chứng minh a chia hết cho 5:
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9
xét các trường hợp:
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý)
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý)
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7)
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý)
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý)
=> a chia hết cho 5
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40
hay : a là bội số của 40
a = b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức .
Ta có các tính chất cua đồng dư thức và các tính chất sau:
Cho x là số tự nhiên
Nếu x lẻ thì =\(\Rightarrow\) x^2 =1 (mod 8)
x2 =-1(mod 5) hoặc x2 = 0(mod 5)
Nếu x chẵn thì x2 = \(-1\)(mod 5) hoặc x2 =1(mod 5) hoặc x2 = 0(mod 5)
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt
3a+1=m^2
2a+1 =n^2
=> m^2 -n^2 =a (1)
m^2 + n^2 =5a +2 (2)
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3)
Từ (2) ta có (m^2 + n^2 )=2(mod 5)
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5)
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5
từ pt ban đầu => n lẻ =>n^2=1(mod 8)
=> 3n^2=3(mod 8)
=> 3n^2 -1 = 2(mod 8)
=> (3n^2 -1)/2 =1(mod 8)
Từ (3) => m^2 = (3n^2 -1)/2
do đó m^2 = 1(mod 8)
ma n^2=1(mod 8)
=> m^2 - n^2 =0 (mod 8)
=> a chia hết cho 8
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40
Nếu bạn không biết đồng dư thức thì .......:))
CMR: nếu 2n+1 và 3n+1 đều là các số chính phương thì n chia hết cho 40
Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )
Mik phải đi ngủ rồi !
-Bye-
Chứng minh rằng nếu n thuộc N , n + 1 và 2n + 1 đều là số chính phương thì n chia hết cho 24
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)
Do đó: n⋮3
Vậy ta có đpcm.
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24
Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ
⇒2n+1=1(mod8)⇒2n+1=1(mod8)
=> n ⋮⋮ 4
=> n chẵn
=> n+1 cũng là số lẻ
⇒n+1=1(mod8)⇒n+1=1(mod8)
=> n ⋮⋮ 8
Mặt khác :
3n+2=2(mod3)3n+2=2(mod3)
⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ
⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)
=> n chia hết cho 3
Mà ( 3 ; 8 ) = 1
=> n chia hết cho 24
Bạn tham khảo: !!!
Vì 2n-1 là số chính phương. Mà 2n-1 lẻ
\(\Rightarrow2n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮4\)
\(\Rightarrow\)n chẵn
\(\Rightarrow n+1\)lẻ
\(\Rightarrow n+1=1\left(mod8\right)\)
\(\Rightarrow n⋮8\)
Mặt khác
\(3n+2=2\left(mod3\right)\)
\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)
Mà n+1 và 2n+1 đều là các số chính phương lẻ
\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)
\(\Rightarrow n⋮3\)
Mà (3:8)=1
\(\Rightarrow n⋮24\)