Cho A=\(\frac{4n+1}{2n+3}\).Tìm n thuộc Z để A là phân số tối giản
Bài 1: Cho A = n+10/2n+8
a) TÌm n thuộc Z để A là phân số
b) Tìm n thuộc Z để A thuộc Z
Bài 2: TÌm n thuộc Z để 2n+3/4n+1 là phân số tối giản
Tìm n thuộc Z để :
a) 2n+3/4n+1 là phân số tối giản
b) 3n+2/7n+1 là phân số tối giản
c) 2n+7/5n+3 là phân số tối giản
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
Cho A= 4n+1/ 2n-3
a)Tìm n để A thuộc Z
b) Tìm n để A là phân số tối giản
a) Để A thuộc Z thì :
\(4n+1⋮2n-3\)
\(\Rightarrow4n-6+7⋮2n-3\)
Ta có : \(4n-6⋮2n-3\)
\(\Rightarrow7⋮2n-3\)
\(\Rightarrow2n-3\in\left(1;-1;7;-7\right)\)
\(\Rightarrow2n\in\left(4;2;10;-4\right)\Leftrightarrow n\in\left(2;1;5;-2\right)\)
b) Để A là phân số tối giản thì n không là ước của 7
a)Ta có \(A\in Z\)
\(\Rightarrow4n+1⋮2n-3\)
\(\Rightarrow4n+4⋮2n\)
\(\Rightarrow2n+2⋮n\)
Mà \(2n⋮n\)
\(\Rightarrow2⋮n \)\(\Rightarrow n\inƯ\left(2\right)\)
=> n = -2;-1;1;2
a ) Để A thuộc Z thì 4n + 1/2n - 3 thuộc Z
=> 4n + 1 \(⋮\)2n - 3
=> 4n - 6 + 7 \(⋮\)2n - 3
=> 2 . ( 2n - 3 ) + 7 \(⋮\)2n - 3 mà 2 . ( 2n - 3 ) \(⋮\)2n - 3 => 7 \(⋮\)2n - 3
=> 2n - 3 thuộc Ư ( 7 ) = ...
Tìm n
b ) Gọi d thuộc Ư C ( 4n + 1 , 2n - 3 ) , d nguyên tố
=> \(\hept{\begin{cases}4n+1⋮d\\2n-3⋮d\end{cases}}\)=> \(\hept{\begin{cases}4n+1⋮d\\4n-6⋮d\end{cases}}\)=> ( 4n + 1 ) - ( 4n - 6 ) \(⋮\)d
=> 7 chia hết cho d => d thuộc Ư ( 7 ) mà d nguyên tố => d = 7
Với d = 7 thì 4n + 1 \(⋮\)7
=> 8n+ 2 \(⋮\)7
=> ( 7n + 7 ) + ( n - 5 ) \(⋮\)7 mà ...
=> n - 5 \(⋮\)7 => n = 7k + 5 ( k thuộc N )
Khi đó 2n - 3 = 2.( 7k + 5 ) - 3 = 14k + 10 - 3 = 14k + 7 \(⋮\)7
=> với n = 7k + 5 thì phân số A chưa tối gian
Do đó nếu n khác 7k + 5 thì phân số A tối giản
Vậy ...
ban hoc lop may vay
A=(2n+1)/(n-3)+(3n-5)\(n-3)-(4n-5)\(n-3)
a\tìm n để Anhận giá trị nguyên(A thuộc Z)
b\tìm n để a là phân số tối giản
Cho phân số B= 4n+1/2n-3, ( n thuộc Z)
a) Tìm n để B có giá trị là số chính phương
b) Tìm n để B là phân số tối giản
c) Tìm n để B đạt GTLN
Bg
a) Ta có: B = \(\frac{4n+1}{2n-3}\) (n thuộc Z)
Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)
=> 4n + 1 ⋮ 2n - 3
=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3
=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3
=> 4n + 1 - (4n - 6) chia hết cho 2n - 3
=> 4n + 1 - 4n + 6 chia hết cho 2n - 3
=> 4n - 4n + 1 + 6 chia hết cho 2n - 3
=> 7 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
Ư(7) = {1; 7; -1; -7}
Lập bảng:
2n - 3 = | 1 | 7 | -1 | -7 |
n = | 2 | 5 | 1 | -2 |
(loại vì không phải scp) | (loại) | (loại) |
Vậy n = {2; -2} thì B là số chính phương
b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3 (ta chỉ cần loại những số n trong bảng)
=> n không thuộc {2; 5; 1; -2}
c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0
=> 2n - 3 = 1
=> 2n = 1 + 3
=> 2n = 4
=> n = 4 : 2
=> n = 2
Vậy n = 2 thì B đạt GTLN
b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d
=> 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d
=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)
c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).
Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.
2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm.
Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất.
=> 2n - 3 đặt giá trị dương nhỏ nhất .
cho C = 4n+3 / 2n-1 [ n thuộc Z ] . Tìm số tự nhiên n để C là phân số tối giản
Gọi ƯC nguyên tố của 4n+3 và 2n-1 là d. Ta có:
4n+3 chia hết cho d => 4n-2+5 chia hết cho d
2n-1 chia hết cho d => 4n-2 chia hết cho d
=> 4n-2+5-(4n-2) chia hết cho d
=> 5 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 5
=> 2n-1+5 chia hết cho 5
=> 2n+4 chia hết cho 5
=> 2(n+2) chia hết cho 5
=> n+2 chia hết cho 5
=> n = 5k-2
=> Vậy để phân số tối giản thì n\(\ne\)5k-2
Cho phân số B = \(\frac{4n+1}{2n-3}\), n thuộc Z
a, Tìm n để B là p/s tối giản
b, Tìm n để B đạt giá trị nhỏ nhất, giá trị lớn nhất và tính các giá trị đó
a, \(\frac{4n+1}{2n-3}=\frac{2n-3+2n+4}{2x-3}\)
= \(\frac{2n-3}{2n-3}+\frac{2n+4}{2n-3}\) = \(1+\frac{2n-3+7}{2n-3}=1+\frac{7}{2n-3}\)
để B tối giản thì 7 phải chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(7)
=> 2n - 3 = { 1 , -1 , 7 , -7 }
=> 2n = { 4 , 2 , 10 , -4 }
=> n ={ 2 , 1 ,5 ,-2 }
Đừng bỏ cuộc
b, để \(\frac{4n+1}{2n-3}\) lớn nhất
=> 2n - 3 phải nhỏ nhất
mà 2n - 3 phải >0 và khác 0 ( là mẫu số )
=> 2n -3 = 1
=> 2n = 4
n = 2
(ᴾᴿᴼシPickaミ★ácミ ★Quỷ★彡)
Ừ câu a)
Để B tối giản thì 7 phải không chia hết cho 2n - 3
=> n khác {2; -2; 5; 1}