tim x,y,z biet : 5x=2y,2x=3z va xy=90
tim x,y,z trong cac truog hop sau
a)2x=3y=5z va |x+2y|=5
b)5x=2y;2x=3z va xy=90
c) \(\frac{y+z+1}{x}\)=\(\frac{x+z+2}{y}\)=\(\frac{x+y-3}{z}\)=\(\frac{1}{x+y+z}\)
a)
\(2x=3y\Rightarrow y=\frac{2x}{3}\)
\(!x+2y!=5\Rightarrow\orbr{\begin{cases}x+2y=5\\x+2y=-5\end{cases}\Rightarrow\orbr{\begin{cases}x+2.\frac{2}{3}x=5\Rightarrow x=\frac{15}{7}\\x+2.\frac{2}{3}x=-5\Rightarrow x=-\frac{15}{7}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}y=\frac{10}{7}\\y=\frac{-10}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}z=\frac{6}{7}\\z=\frac{6}{7}\end{cases}}\)
(x,y,z)=(15/7,10/7,6/7)
(x,y,z)=(-15/7,-10/7,-6/7)
Given that 5x=2y, 2x=3z and xy=90, where x,y,z are positive. Calculate: x+y+z=....
\(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x}{6}=\frac{y}{15}\)
\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\Rightarrow\frac{x}{6}=\frac{z}{4}\)
\(\Rightarrow\frac{y}{15}=\frac{x}{6}=\frac{z}{4}=k\)
\(\Rightarrow\left\{\begin{matrix}y=15k\\x=6k\end{matrix}\right.\Rightarrow xy=15k\cdot6k\Rightarrow90k^2=90\Rightarrow k^2=1\)
Because x,y,z are positive
\(\Rightarrow k=\sqrt{1}=1\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{6}=1\rightarrow x=6\\\frac{y}{15}=1\rightarrow y=15\\\frac{z}{4}=1\rightarrow z=4\end{matrix}\right.\)
\(\Rightarrow x+y+z=6+15+4=25\)
Tìm x,y,z
5x=2y; 2x=3z và xy=90
Từ 5x=2y =>\(\frac{x}{2}\)=\(\frac{y}{5}\)=>\(\frac{x}{6}\)=\(\frac{y}{15}\)1
Từ 2x=3z =>\(\frac{x}{3}\)=\(\frac{z}{2}\)=>\(\frac{x}{6}\)=\(\frac{z}{4}\)2
Từ 1 và 2, suy ra : \(\frac{x}{6}\)=\(\frac{y}{15}\)=\(\frac{z}{4}\)
Đặt \(\frac{x}{6}\)=\(\frac{y}{15}\)=k => x=6k ; y=15k
Thay x=6k ; y=15k vào xy=90,ta có:
xy=90 <=> 6k.15k=90 <=> k^2.15.6=90 <=> k^2.90=90 <=> k^2=1 hoặc -1
Với k=1 ,ta có:
x=6 ; y=15 ; z=4
Với k=-1 ,ta có:
x=-6 ; y=-15 ; z=-4
Mk ko bt có đúng ko nữa. Nếu ko đúng thì sorry nha!!!
cho mình hỏi???????
tìm x,y,z biết 5x=2y, 2x=3z và xy=90
5x=2y
\(=>\frac{x}{2}=\frac{y}{5}=>\frac{x}{6}=\frac{y}{15}\left(1\right)\)
2x=3z
\(=>\frac{x}{3}=\frac{z}{2}=>\frac{x}{6}=\frac{z}{4}\left(2\right)\)
Từ (1) và (2)
=>\(\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{4}=k\)
=>x=6k
y=15k
z=4k
=>x.y=6k.15k
=>6k.15k=90
\(=>90.k^2=90=>k^2=1=>k=1;-1\)
với k= 1
=>x=6;y=15;z=4
với k =-1
=>x=-6;y=-15;z=-4
Đặt 5x = 2y =k => x = k/5 ; y= k/2
=> xy = k^2 / 10 = 90 => k = 30
=> x= 30/5 = 6; y= 30/2 = 15
Ta có: 2x= 3z
=> 2* 6 = 3z => 3z = 12 => z= 4
Vậy ...
5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)=> \(\frac{x}{6}=\frac{y}{15}\)
2x = 3z => \(\frac{x}{3}=\frac{z}{2}\)=> \(\frac{x}{6}=\frac{z}{4}\)
=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)và xy = 90
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{4}=k\)
=> x = 6k , y = 15k , z = 4k
Thay x = 6k , y = 15k , z = 4k vào xy = 90 ta có :
xy = 6k . 15k = 90 k2 = 90
=> k2 = 1
=> k = 1 hoặc k = -1
Xét k = 1 => x = 6 , y = 15 => z = 1
Xét k = -1 => x = -6 , y = - 15 , z = 1
Vậy x = 6 , y = 15 , z = 1
hoặc x = -6 , y = - 15 , z = 1
Tìm x , y , z trong các trường hợp sau :
a) 2x=3y=5z và | x - 2y | = 5
b ) 5x = 2y ; 2x = 3z và xy = 90
c ) ( y + z + 1 ) / x = ( x + z + 2 ) / y = ( x + y - 3 ) / z = 1 / ( x + y + z)
Bài 2 : Tìm x , y . z trong các trường hợp sau :
a) 2x = 3y = 5z và / x - 2y / = 5
b) 5x = 2y , 2x = 3z và xy = 90
Tim x, y, z biet x, y, z > 0 , x-y/z = y-z/x = z-x/y va x+2y+3z=30
Tìm x,y,z trong các trường hợp :
a) 2x = 3y = 5z và | x - 2y | = 5
b) 5x = 2y ; 2x = 3z và xy = 90
c) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm x,y,z biết:
a) 2x=3y=5z và |x-2y|=5
b) 5x=2y, 2x=3z và xy=90
c) \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)