Rut gon bt P=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
Rut gon :P=12.(52+1).(54+1).(58+1).(516+1)
2P = 24.(5^2 + 1 )(5^4 + 1) ... (5^16 + 1)
2P = (5^2 - 1) (5^2 + 1) (5^4 + 1) .. (5^16+1)
2P = (5^4 - 1 )(5^4 + 1 ) (5^8 + 1)
2P = (5^8 - 1 ) (5^8 + 1) (5^16 + 1)
2P = ( 5^ 16 - 1 ) 5^ 16 + 1)
2P = 5^32 - 1
P = (5^32 - 1) : 2
\(P=12.\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Rightarrow2P=24\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow2P=\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow2P=\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow2P=\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow2P=\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\Leftrightarrow2P=5^{32}-1\)
\(\Leftrightarrow P=\frac{5^{32}-1}{2}\)
2P = 24.(5^2 + 1 )(5^4 + 1) ... (5^16 + 1)
2P = (5^2 - 1) (5^2 + 1) (5^4 + 1) .. (5^16+1)
2P = (5^4 - 1 )(5^4 + 1 ) (5^8 + 1)
2P = (5^8 - 1 ) (5^8 + 1) (5^16 + 1)
2P = ( 5^ 16 - 1 ) 5^ 16 + 1)
2P = 5^32 - 1
P = (5^32 - 1) : 2
đúng nha
giúp mình giải bài này
rut gon bieu thuc 12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
thanks
đặt A=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=>2a=24(5^2+1)(5^4-1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=>A=(5^32-1)/2=1/2(5^32-1)
chúc bạn học toots^..^
rút gon: C=12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
\(C=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{32}-1\right)\)
\(=\frac{5^{32}-1}{2}\)
Đinh Đức Hùng lấy 52 -1 ở đâu đấy
Lấy xong rồi thì phải chia lại chứ
rut gon bieu thuc
\(Q=\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)
\(P=12\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
Rút gon biểu thức:
P=12(52+1)(54+1)(58+1)(516+1)
Ta có:
P=12(52+1)(54+1)(58+1)(516+1)
P=(52-1)(52+1)(54+1)(58+1)(516+1):2
P=(54-1)(54+1)(58+1)(516+1):2
P=(58-1)(58+1)(516+1):2
P=(516-1)(516+1):2
P=(532-1):2
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)=\frac{5^{32}-1}{2}\)
tính giá trị bt sau :
12*(5^2+1)(5^4+1)(5^8+1)(5^16+1)
\(12.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(=\frac{24}{2}.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(=\frac{5^2-1}{2}.\left(5^2+1\right).\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(=\frac{5^4-1}{2}.\left(5^4+1\right).\left(5^8+1\right).\left(5^{16}+1\right)\)
\(=\frac{5^8-1}{2}.\left(5^8+1\right).\left(5^{16}+1\right)\)
\(=\frac{5^{16}-1}{2}.\left(5^{16}+1\right)\)
\(=\frac{5^{32}-1}{2}\)
rut gon A=1+1^ 2+1^ 3+1^4+1^5+1^6+1^7+1^8+1^9+...+1^2012
rút gọn bt P=12(52+1)(54+1)(58+1)(516+1)
P= 12(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=> 2P = 24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1
=> P = (5^32-1)/2
rut gon 1*2*5+3*3*15+4*8*20+7*14*350/2*5*11+6*10+33+8*20*44+14*35*770