1 STN chia 9 dư 6 ; chia 11 dư 8.Hỏi số đó chia 99 dư mấy?
1, tìm 1 số tự nhiên nhỏ nhất khác 0 chia hết cho 4,5,6,7,9,10
2, tìm 1 stn nhỏ nhất khác 1 chia cho 6,7,8,9,10,11,12 đều dư 1
3, tim 1 stn nhỏ nhất chia 4 dư 2 , 6 dư 4 , 7 dư 5 ,8 dư 6 ,9 dư 7
4 , tìm stn nhỏ nhất chia 2,5,9 dư 1 và 7 dư 6
1 stn chia 9 dư 6, chia 11dư 8 thì chia 99 dư ?
Chứng minh rằng : Không có stn nào chia cho 15 dư 6. Còn khi chia cho 9 dư 1
ko có chuyện ko có stn nào chia 15 dư 6 mà chia 9 dư 1!
tìm stn a nhỏ nhất mà a chia 9 dư 3 và chia 7 dư 6
Chia STN a cho 12 dư 2
chia STN b cho 9 dư 1
Chứng minh (a+b) chia hết cho 3
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
Cho STN a chia cho 9 đc số dư là 4
Cho STN b chia cho 9 đc số dư là 5
Cho STN c chia cho 9 đc số dư là 8
a) CMR a+b chia hết cho 9
b) Tìm số dư của b+c khi chia cho 9
tìm STN a biết achia cho 6 dư 4, chia cho 7 dư 5 , chia cho 9 dư 7 :và 150<a<200
1. Có STN nào chia cho 15 dư 6 còn chia 9 dư 1 không ?
2. Cho n thuộc N. Hỏi 60n + 45 có chia hết cho 15 không ? Có chia hết cho 30 không ?
3. Cho 4 STN không chia hết cho 5. Khi chia cho 5 được những số dư khác nhau.Chứng tỏ rằng tổng của chúng chứng minh rằng chia hết cho 5.
1, Khi chia một STN a cho 4, ta được số dư là 3 còn khi chia cho 9 ta được số dư là 5. Tìm số dư trong phép chia a cho 36
2, Khi chia một STN a cho một STN b ta được thương là 18 số dư là 24. Hỏi thương và số dư thay đổi thế nào thì SBC và SC giảm đi 6 lần
3, Tìm số dư trong phép chia sau:
\(a,2^{1000}:5\)
\(b,2^{1000}:25\)
Bài 1:
Theo đề bài ta có:
\(a=4q_1+3=9q_2+5\) (\(q_1\) và \(q_2\) là thương trong hai phép chia)
\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)
Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)
Mà \(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)
\(\Rightarrow a+13=36k\left(k\ne0\right)\)
\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)
Vậy \(a\div36\) dư \(23\)
Câu 1
Theo bài ra ta có:
\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)
\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)
và \(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)
Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1
nên a là bội của 4.9=36
\(\Rightarrow a+13=36k\left(k\in N\right)\)
\(\Rightarrow a=36k-13\)
\(\Rightarrow a=36.\left(k-1\right)+23\)
Vậy a chia 36 dư 23
Bài 3:
\(a,2^{1000}\div5\)
Ta có:
\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)
Vì a có tận cùng là 6
\(\Rightarrow2^{1000}\div5\) dư \(1\)