Những câu hỏi liên quan
PN
Xem chi tiết
H24
6 tháng 9 2017 lúc 23:47

cho a =1/2.3/4.5/6.....99/100.Chứng minh rằng:1/15<a<1/10.

ta co a < 2/3.4/5.....100/101 
nhan hai ve cho a ta co 
a^2 <2/3.4/5...100/101.1/2.3/4.5/6...99/100 
a^2<1/101 <1/100 
a< can 1/100 a <1/10.

Cm tương tự ta dc a>1/15.

Bn cx có thể kham khảo bài làm khác là:https://diendan.hocmai.vn/threads/toan-6-cmr-a-1-10-va-a-1-15.223994/

Bình luận (0)
TN
5 tháng 4 2018 lúc 16:53

sao lại nhỏ hơn

Bình luận (0)
DA
3 tháng 1 2019 lúc 22:08

vì: Ta có a:1/2=3/4.5/6.7/8...99/100

=> a<3/4.5/6..99/100

Bình luận (0)
NH
Xem chi tiết
TN
Xem chi tiết
NQ
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
KZ
31 tháng 3 2016 lúc 17:05

Hình như sai đề thì phải chứ mk làm ko đc !!!

Bình luận (0)

  A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100) 
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100 
<=> A < 1 - 1/100 < 1 (đpcm) 

So với  thì đây

Bình luận (0)
H24
Xem chi tiết
AH
24 tháng 7 2021 lúc 18:09

Lời giải:
Xét số hạng tổng quát: 

\(\frac{\sqrt{n+1}-\sqrt{n}}{n+(n+1)}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n(n+1)}}=\frac{1}{2}(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}})\) theo BĐT Cô-si.

Do đó:
\(x< \frac{1}{2}\left[\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\right]=\frac{1}{2}(1-\frac{1}{\sqrt{100}})< \frac{1}{2}\)

Ta có đpcm.

Bình luận (0)
HA
Xem chi tiết