Những câu hỏi liên quan
H24
Xem chi tiết
DQ
Xem chi tiết
JA
6 tháng 3 2016 lúc 15:43

=2.(6/1.4.7 + 6/4.7.10 + 6/7.10.13 + ... + 6/54.57.60)

=2.(1/1.4-1/4.7+1/4.7-1/7.10+1/7.10-1/10.13+...+1/54.57-1/57.60)

=2(1.4-1/57.60)

TỰ TÍNH

Bình luận (0)
ST
Xem chi tiết
NM
26 tháng 12 2016 lúc 9:05

Đặt \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+...+\frac{12}{54.57.60}=A\)

\(\frac{A}{2}=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)

\(\frac{A}{2}=\frac{7-1}{1.4.7}+\frac{10-4}{4.7.10}+...+\frac{60-54}{54.57.60}\)

\(\frac{A}{2}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{1.4}-\frac{1}{57.60}\)

\(A=\frac{1}{2}-\frac{1}{30.57}< \frac{1}{2}\)

Bình luận (0)
MT
Xem chi tiết
MT
15 tháng 7 2015 lúc 9:35

\(A=\frac{1}{1.4.7}+\frac{1}{4.7.10}+...+\frac{1}{54.57.60}\)

\(\Rightarrow6A=\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}\)

\(=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.47}-\frac{1}{57.60}\)

\(=\frac{1}{4}-\frac{1}{3420}=\frac{855}{3420}-\frac{1}{3420}=\frac{427}{1710}\)

\(\Rightarrow A=\frac{427}{1710}:6=\frac{427}{1710}.\frac{1}{6}=\frac{427}{10260}\)

Bình luận (0)
TT
15 tháng 7 2015 lúc 9:36

Nhận thấy: 

\(\frac{6}{1.4.7}=\frac{1}{1.4}-\frac{1}{4.7}\)

...............

\(\frac{6}{54.57.60}=\frac{1}{54.57}-\frac{1}{57.60}\)

=> ta phải nhân A vói 6 

=> 6A = 

\(\frac{6}{1.4.7}+\frac{6}{4.7.10}+...+\frac{6}{54.57.60}=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+...+\frac{1}{54.57}-\frac{1}{57.60}=\frac{1}{4}-\frac{1}{57.60}=\frac{427}{1710}\)

=> A = 427/1710 : 6 =427/10260

Bình luận (0)
WO
Xem chi tiết
WO
18 tháng 2 2017 lúc 11:11

Gọi biểu thức là A, ta có:

A = \(\frac{12}{1.4.7}+\frac{12}{4.7.10}+\frac{12}{7.10.13}+...+\frac{12}{54.57.60}=2\left(\frac{6}{1.4.7}+\frac{6}{4.7.10}+\frac{6}{7.10.13}+...+\frac{6}{54.57.60}\right)\)

A = \(2\left(\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-\frac{1}{10.13}+...+\frac{1}{54.57}-\frac{1}{57.60}\right)\)

A = \(2\left(\frac{1}{1.4}-\frac{1}{57.60}\right)=2\left(\frac{427}{1710}\right)=\frac{427}{855}< \frac{427}{854}=\frac{1}{2}\)

Vậy A < \(\frac{1}{2}\)(điều cần chứng minh)

Bình luận (0)
HH
Xem chi tiết
NN
7 tháng 1 2016 lúc 21:52

P = 2*[ 6/(1*4*7) + 6/(4*7*10) + ... + 6/(54*57*60) ]
   = 2*[ 1/(1*4) - 1/(4*7) + 1/(4*7) - 1/(7*10) + ... + 1/(54*57) -1/(57*60) ]
   = 2*[ 1/(1*4) - 1/(57*60) ]
   = 2* (427/1710)
   = 427/855 <1/2
S = 1+ 1/2^2 + 1/3^2 +... + 1/100^2
1/2^2 < 1/(1*2)
1/3^2 < 1/(2*3)
...
1/100^2 < 1/(99*100)
==> 1/2^2 +1/3^2 +.., +1/100^2 < 1/(1*2) + 1/(2*3) + ... + 1/(99*100) = 1 -1/2 +1/2 - 1/3 +1/3 -1/4 +... - 1/100
                                                                                                   =1 - 1/100 <1
==> 1/2^2 + 1/3^2 +... + 1/100^2  < 1
==> 1 + 1/2^2 + 1/3^2 +... +1/100^2 <2

Bình luận (0)
H24
Xem chi tiết
YY
Xem chi tiết
H24
Xem chi tiết
TK
13 tháng 5 2019 lúc 21:08

Ta có \(A=\frac{1}{1.4}-\frac{1}{4.7}+\frac{1}{4.7}-\frac{1}{7.10}+\frac{1}{7.10}-...+\frac{1}{16.19}-\frac{1}{19.22}\)

\(=\frac{1}{4}-\frac{1}{418}=\frac{207}{836}\)

Bình luận (0)
HS
13 tháng 5 2019 lúc 21:09

\(A=\frac{6}{1\cdot4\cdot7}+\frac{6}{4\cdot7\cdot10}+\frac{6}{7\cdot10\cdot13}+...+\frac{6}{16\cdot19\cdot22}\)

\(A=\frac{1}{1\cdot4}-\frac{1}{4\cdot7}+\frac{1}{4\cdot7}-\frac{1}{7\cdot10}+...+\frac{1}{16\cdot19}-\frac{1}{19\cdot22}\)

\(A=\frac{1}{4}-\frac{1}{19\cdot22}=\frac{207}{836}\)

Bình luận (0)