[1-1/2]*[1-1/3]*[1-1/4]*...*[1-1/99]*1-1/100
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1/1*2-1/1*2*3+1/2*3-1/2*3*4+1/3*4-1/3*4*5+...+1/99*100-1/99*100*101
1+(1+2)+(1+2+3)+...+(1+2+3+4+...+99+100)/(1*100+2*99+...+99*2+100*1)*2013
Ta chia thành hai vế (1) và (2)
Số số hạng (1) là :
( 101 - 1 ) : 1 + 1 = 101 ( số )
Tổng (1) là :
( 101 + 1 ) x 101 : 2 = 5151
Tự tính tiếp
\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)
\(=1.100+2.99+3.98+...+99.2+100.1\)
Do đó kết quả của phép tính cần tìm là:
\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)
1/1*2*3+1/2*3*4+1/3*4*5+........+1/98*99*100=1/k*(1/1*2-1/99*100)
1/1*2 - 1/2*3 - 1/3*4- ..... -1/98*99=1/100+1/99*100
\(...=1-\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{4}-...-\dfrac{1}{98}+\dfrac{1}{99}\)
\(=\dfrac{1}{99}\) (Bạn xem lại đề)
1/1*2 1/2*3 1/3*4 ..... -1/98*99=1/100 1/99*100
1/1*2 - 1/2*3 - 1/3*4- ..... -1/98*99=1/100+1/99*100
1+1/2+1/3+1/4+...+1/100
1/1*100+1/2*99+1/3*98+...+1/99*2+1/100*1
\(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\)
\(=\left(1+\frac{1}{100}\right)+\left(\frac{1}{2}+\frac{1}{99}\right)+....+\left(\frac{1}{50}+\frac{1}{51}\right)\)
\(=\frac{101}{1.100}+\frac{101}{2.99}+....+\frac{101}{50.51}\)
\(=101.\left(\frac{1}{1.100}+\frac{1}{2.99}+...+\frac{1}{50.51}\right)\)
Vế mẫu :
\(\frac{1}{1.100}+\frac{1}{2.99}+......+\frac{1}{1.100}\)
\(=2\left(\frac{1}{1.100}+\frac{1}{2.99}+....+\frac{1}{50.51}\right)\)
Vậy kết quả là :
\(\frac{101}{2}\)
Tử số = 1 + 1/2 + 1/3 + 1/4 + ... + 1/100
= (1 + 1/100) + (1/2 + 1/99) + ... + (1/50 + 1/51)
= 101/1.100 + 101/2.99 + ... + 101/50.51
= 101.(1/1.100 + 1/2.99 + ... + 1/50.51)
Mẫu số = 1/1.100 + 1/2.99 + 1/3.98 + ... + 1/99.2 + 1/100.1
= 2.(1/1.100 + 1/2.99 + ... + 1/50.51)
=> phân số đề bài cho = 101/2
1+1/2*2+1/3*3+1/4*4+.....+1/99*99+1/100*100
a,(1-1/2)*(1-1/3)*(1-1/4)....(1-1/99)*(1-1/100)
b,(1+1/2)*(1+1/3)*(1+1/4)....(1+1/99)*(1+1/100)
a) \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{99}\right)\cdot\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{98}{99}\cdot\frac{99}{100}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot98\cdot99}{2\cdot3\cdot4\cdot...\cdot99\cdot100}=\frac{1}{100}\)
b) \(\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{4}\right)\cdot...\cdot\left(1+\frac{1}{99}\right)\cdot\left(1+\frac{1}{100}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\cdot\frac{101}{100}\)
\(=\frac{3\cdot4\cdot5\cdot...\cdot100\cdot101}{2\cdot3\cdot4\cdot...\cdot99\cdot100}=\frac{101}{2}\)
Chứng minh rằng :
a,1- 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...... + 1/ 99 - 1/ 100 = 1 / 51 + 1/ 52 + 1/ 53 + ... + 1/ 100
b, A= 1/3 - 2/ 32 + 3/ 33 - 4/ 34 + .... + 99/ 399 - 100/ 3100 < 3/ 16
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\RightarrowĐPCM\)
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450