Những câu hỏi liên quan
NC
Xem chi tiết
NL
Xem chi tiết
BD
Xem chi tiết
NC
Xem chi tiết
BQ
Xem chi tiết
AH
14 tháng 9 2024 lúc 19:56

Lời giải:
Ta có:

\(A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+...+(\frac{3}{2})^{2012}\)

\(\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}\\ \Rightarrow \frac{3}{2}(A-\frac{1}{2})-(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}\)

$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$

$A-\frac{1}{2}=2(\frac{3}{2})^{2013}-3$

$A=2(\frac{3}{2})^{2013}-2,5$

$\Rightarrow A-B=2(\frac{3}{2})^{2013}-2,5-(\frac{3}{2})^{2013}:2$

$=\frac{3}{2}(\frac{3}{2})^{2013}-2,5=(\frac{3}{2})^{2014}-2,5$

Bình luận (0)
CL
Xem chi tiết
NT
Xem chi tiết
MY
Xem chi tiết
VH
Xem chi tiết
TL
6 tháng 4 2015 lúc 23:35

\(\frac{3}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}\)

\(\Rightarrow\frac{3}{2}.A-A=\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+...+\left(\frac{3}{2}\right)^{2013}-\left(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+...+\left(\frac{3}{2}\right)^{2012}\right)\)

\(\Rightarrow\frac{1}{2}.A=\frac{3}{4}+\left(\frac{3}{2}\right)^{2013}-\frac{1}{2}-\frac{3}{2}=\left(\frac{3}{2}\right)^{2013}-\frac{5}{4}\Rightarrow A=2.\left(\frac{3}{2}\right)^{2013}-\frac{5}{2}\)

\(B-A=\frac{1}{2}.\left(\frac{3}{2}\right)^{2013}-2.\left(\frac{3}{2}\right)^{2013}+\frac{5}{2}=-\left(\frac{3}{2}\right)^{2014}+\frac{5}{2}\)

Bình luận (0)
BM
1 tháng 10 2017 lúc 15:23

Trần Thị Loan tại sao lại + 5/2?

Bình luận (0)
H24
25 tháng 4 2018 lúc 8:44

ngu thế Bụng Mon

Bình luận (0)