Tìm các cặp số nguyên dương x,y sao cho :
\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
Tìm các cặp số nguyên dương (x;y) sao cho \(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
Trả lời
\(\frac{x-1}{4}-\frac{1}{y+3}=\frac{1}{2}\)
\(\Rightarrow\frac{x-1}{4}-\frac{1}{2}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1}{4}-\frac{2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-1-2}{4}=\frac{1}{y+3}\)
\(\Rightarrow\frac{x-3}{4}=\frac{1}{y+3}\)
\(\Rightarrow\left(x-3\right)\left(y+3\right)=4\)
Vì \(x,y\inℕ\)\(\Rightarrow x-3;y+3\inℕ\)
\(\Rightarrow x-3;y+3\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng giá trị
x-3 | 1 | 2 | 4 |
y+3 | 4 | 2 | 1 |
x | 4 | 5 | 7 |
y | 1 | -1 | -2 |
Đối chiếu điều kiện \(x,y\inℕ\)
Vậy \(\left(x;y\right)\in\left\{\left(4;1\right)\right\}\)
a)Tìm cặp số x,y nguyên sao cho: \(\frac{x-1}{5}\)=\(\frac{3}{y+4}\)
b)Tìm các số nguyên x sao cho P=\(\frac{x-2}{x+1}\)nguyên
c)Tìm cặp số x,y nguyên sao cho: \(\frac{x}{3}\)- \(\frac{2}{y}\) = \(\frac{1}{6}\)
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Tìm mọi cặp số nguyên dương x,y sao cho \(\frac{x^4+2}{x^2y+1}\)là số nguyên dương
tìm tất cả các cặp số nguyên dương (x;y) sao cho \(\frac{x^3+x}{xy-1}\) là số nguyên dương.
TÌM các cặp số nguyên dương x,y sao cho : 3.x2.y-7.y= 5. x2 +84
tìm tất cả các cặp số nguyên dương (x,y) sao cho \(\frac{x^3+x}{xy-1}\) là số nguyên dương
tìm tất cả các cặp số nguyên dương x, y , z sao cho
\(\frac{x+\sqrt{2017}y}{y+\sqrt{20117}z}\) là số hữu tỉ . đồng thời x2 + y2 + z2 là sô nguyên tố
Bạn gõ thừa số "1" thì phải ?
Đặt \(\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=m\) (với \(m\in Q\))
\(\Rightarrow x+\sqrt{2017}y=my+mz\sqrt{2017}\)\(\Leftrightarrow\left(x-my\right)-\sqrt{2017}\left(y-mz\right)=0\)(*)
+) Nếu \(y-mz\ne0\) thì: \(\sqrt{2017}=\frac{-\left(x-my\right)}{y-mz}\) (1)
Ta có: \(x;y;z\in N;m\in Q\Rightarrow\frac{-\left(x-my\right)}{y-mz}\in Q\) (2)
\(\sqrt{2017}\in I\) (Do 2017 không phải số chính phương) (3)
Từ (1); (2) và (3) => Mâu thuẫn => \(y-mz\ne0\)(loại)
+) Nếu \(y-mz=0\) thì: Từ (*) => \(\hept{\begin{cases}x-my=0\\y-mz=0\end{cases}\Rightarrow}\hept{\begin{cases}x=my\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}m=\frac{x}{y}=\frac{y}{z}\\x=m^2z\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}y^2=xz\\x=m^2z\\y=mz\end{cases}}\)
Đặt \(x^2+y^2+z^2=p\) (p nguyên tố) \(\Rightarrow\left(x+z\right)^2-2xz+y^2=p\)
\(\Rightarrow\left(x+z\right)^2-y^2=p\)(Do y2 = xz) \(\Leftrightarrow\left(x+z-y\right)\left(x+y+z\right)=p\)
Ta thấy x;y;z thuộc N* => \(x+z-y\le x+y+z\)
Nên \(\hept{\begin{cases}x+z-y=1\left(4\right)\\x+y+z=p\end{cases}}\)(Vì p là số nguyên tố)
Lại có: \(x^2+y^2+z^2=p\Rightarrow m^4z^2+m^2z^2+z^2=p\) (Do x = m2z; y = mz)
\(\Leftrightarrow z^2\left(m^4+m^2+1\right)=p\Rightarrow\hept{\begin{cases}z=1\\m^4+m^2+1=p\end{cases}}\)(p nguyên tố)
Thay z=1 vào (4) ta có: \(x-y+1=1\Leftrightarrow x=y\)
\(m^4+m^2+1=p\Leftrightarrow\left(m^2+m+1\right)\left(m^2-m+1\right)=p\)
\(\Rightarrow m^2-m+1=1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=1\end{cases}}\)
+) Nếu m=0 thì: \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=0\Rightarrow x+y\sqrt{2017}=0\)(Do \(y+z\sqrt{2017}\ne0\))
Mà x;y thuộc N* nên \(x+y\sqrt{2017}>0\)=> Loại.
+) Nếu m=1 thì \(x+y\sqrt{2017}=y+z\sqrt{2017}\Rightarrow y\sqrt{2017}=z\sqrt{2017}\)(x=y)
\(\Rightarrow y=z\Rightarrow x=y=z=1\) (Vì z=1)
Khi đó: \(\hept{\begin{cases}\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=1\\x^2+y^2+z^2=3\end{cases}}\) (thỏa mãn). Vậy x=y=z=1.
tìm tất cả các cặp số nguyên dương (x,y) sao cho \(\frac{x^3+x}{xy-1}\)là số dương
can you hẹp me?? mk đang cần gấp
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
k mik nha