Cho a/b=b/c=c/a và a+b+c khác 0. Chứng minh rằng a=b=c
Các bạn giúp mình vs m cảm ơn
cho a/b=c/d khác 1 và -1 và c khác 0. Chứng minh rằng:
a) (a-b/c-d)^2=ab/cd
b) (a+b/c+d)^3=a^3-b^3/c^3-d^3
Làm ơn giúp mk với mai mình phải nộp bài rồi
CẢM ƠN MN TRƯỚC NHA=)))
vì -1 hơn 1 hai số cho nên;
a) a/b và c/d ^2 =ab/cd hơn kém nhau 2
b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...
Cho \(^{x^2=bc}\) (a khác b,c), chứng minh rằng \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Các bạn giúp mk vs. Mk đang cần gấp. Cảm ơn các bạn nha!
Đề sai: \(x^2=bc\) phải là \(a^2=bc\)
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)
\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)
\(\Rightarrow a-ka=-b-kb\)
\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1)
Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)
\(\Rightarrow c-kc=-a-ka\)
\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\) ( 2)
Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)
\(\Rightarrow a^2=bc\left(đpcm\right)\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(k\)nhé !!!
nếu \(a^2=bc\)thì :\(\frac{a}{b}=\frac{c}{a}=>\frac{a}{b}=\frac{c}{a}=\frac{c-a}{a-b}=\frac{c+a}{a+b}\)(theo tính chất dãy tỉ số bằng nhau)
theo tính chất của phân số ta có : \(\frac{a-b}{a+b}=\frac{c+a}{c-a}\)
=> ĐPCM
cho 1/a+1/b+1/c=0 với a,b,c khác 0 và M=b^2c^2/a+c^2a^2/b+a^2b^2/c. chứng minh M=3abc
giúp mình với. cám ơn nhiều
Đề bài : Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\left(a,b,c\ne0\right)\)và \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}\)
Chứng minh M=3abc.
Trước tiên, ta chứng minh bài toán phụ : Cho x+y+z=0 . Chứng minh \(x^3+y^3+z^3=3xyz\)
Giải bài toán phụ như sau : Ta có : \(x+y+z=0\Rightarrow z=-\left(x+y\right)\Rightarrow z^3=-\left[x^3+y^3+3xy\left(x+y\right)\right]\)
\(\Rightarrow x^3+y^3+z^3=-3xy\left(x+y\right)=-3xy\left(-z\right)\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
Áp dụng vào bài đã cho, ta suy ra : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Do đó : \(M=\frac{b^2c^2}{a}+\frac{c^2a^2}{b}+\frac{a^2b^2}{c}=\frac{a^2b^2c^2}{a^3}+\frac{a^2b^2c^2}{b^3}+\frac{a^2b^2c^2}{c^3}=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=a^2b^2c^2.\frac{3}{abc}=3abc\)Vậy \(M=3abc\)(đpcm)
Không có chi :))
Chúc bạn học tốt ! ^.^
cho a/b=b-2011c/c=2012c/a và a+b+c khác o. chứng minh rằng a=b
các bạn cố gắng giúp mính với nhé,hen giờ mình cần gấp lắm.cám ơn các bạn nhiều!
Cho a,b,c là các số hữu tỉ khác 0 và a+b+c khác 0 sao cho a+b-c/c=a-b+c/b=-a+b+c/a. Chứng minh rằng a=b=c. Hicc ai giúp mình vớii mai mình thi r:((
1. CHỨNG MINH RẰNG:
A, VỚI A, B, C, D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0, P NGUYÊN TỐ VÀ AB + CD = P THÌ A , C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM ( AI NHANH VÀ LÀM ĐÚNG MÌNH CHO 1 TICK NHA ) CẢM ƠN CÁC BẠN NHIỀU
Chào bạn!
Ta sẽ chứng minh bài toán này theo phương pháp phản chứng
Giả sử \(\left(a;c\right)=m\)\(V\text{ới}\)\(m\in N\)\(m\ne1\)
Khi đó \(\hept{\begin{cases}a=k_1m\\c=k_2m\end{cases}}\)
Thay vào \(ab+cd=p\)ta có : \(k_1mb+k_2md=p\Leftrightarrow m\left(k_1b+k_2d\right)=p\)
Khi đó p là hợp số ( Mâu thuẫn với đề bài)
Vậy \(\left(a;c\right)=1\)(đpcm)
khó quá
mình cũng đang hỏi câu đấy đây
Cho a,b>0,c khác 0 thõa mãn 1/a+1/b+1/c=0 Chứng minh căn(a+b)=căn(a+c)+căn(b+c) Mình cần gấp ạ!! Mình cảm ơn
Lời giải:
$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$
$\Rightarrow c< 0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$
Từ đây ta có:
\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)
\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)
\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)
\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))
Ta có đpcm.
Cho a,b,c đôi một khác nhau thỏa mãn điều kiện :
a/(b-c) +b/(c-a) + c/(a-b) = 0
Chứng minh rằng : a/(b-c)2 +b/(c-a)2 + c/(a-b)2 = 0
giúp mình vs mình cần gấp ,ai làm nhanh và đúng mình k nhé
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
=> \(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)
Nhân cả hai vế với \(\frac{1}{b-c}\)
=> \(\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Tương tự: \(\frac{b}{\left(c-a\right)^2}=\frac{-bc+c^2-a^2+ba}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{c}{\left(a-b\right)^2}=\frac{-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Cộng vế với vế ta có:
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\)
\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ba-ca+a^2-b^2+cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
Vậy ta có điều phải chứng minh.
Cho a/b=b/c=c/a và a+b+c khác 0;a=2015.Tính b,c
Các bạn giúp mình gấp với ạ,mình cảm ơn nhiều!
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)(Vì a+b+c\(\ne\)0)
\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
Do a = 2015 \(\Rightarrow\)a =b =c =2015
Vậy b = c = 015
Ở phần Vậy...
Mik viết sai mất rồi ko phải là "b = c = 015 đâu
mà là "b = c = 2015" nha bn