S= 1/3+1/5+1/7+...+1/101 chứng tỏ rằng Sko phải là số tự nhiên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho s = 1 phần 3 + 1 phần 5 + 1 phần 7 + 1 phần 9 +...+ 1 phần 99+ 1 phàn 101 .chứng tỏ rằng s ko phải là số tự nhiên
cho S=\(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}\) chứng tỏ S ko phải là số tự nhiên.
\(S=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}>\frac{1}{101}+\frac{1}{101}+\frac{1}{101}+...\frac{1}{101}\)(97 phân số\(\frac{1}{101}\))
\(S=\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}>\frac{97}{101}\)\(\Rightarrow S< 1\)
Do \(0< S< 1\)nên \(S\)không phải là số tự nhiên
cho s = 1 phần 3 + 1 phần 5 + 1 phần 7 + 1 phần 9 +....+ 1 phần 99+1 phần 101.chứng tở rằng s không phải là số tự nhiên
chứng minh rằng B= 1/5+1/7+1/9+...+1/101 không phải là số tự nhiên
chứng minh rằng A= 1+1/2+1/3+...+1/100 không phải là số tự nhiên
chứng minh rằng C= 1/2+1/3+1/4+...+1/50 không phải là số tự nhiên
Để quy đồng mẫu các phân số trong tổng A = 1/2 + 1/3 + 1/4 + ... + 1/100, ta chọn mẫu chung là tích của 2^6 với các thừa số lẻ nhỏ hơn 100. Gọi k1,k2,... k100 là các thừa số phụ tương ứng, tổng A có dạng: B=(k1+k2+k3+...+k100)/(2^6.3.5.7....99).
Trong 100 phân số của tổng A chỉ có duy nhất phân số 1/64 có mẫu chứa 2^6 nên trong các thừa số phụ k1,k2,...k100 chỉ có k64 (thừa số phụ của 1/64) là số lẻ (bằng 3.5.7....99), còn các thừa số phụ khác đều chẵn (vì chứa ít nhất một thừa số 2). Phân số B có mẫu chia hết cho 2 còn tử không chia hết cho 2, do đó B (tức là A) không thể là số tự nhiên.
Ngoài ra với trường hợp tổng quát, hạng tử cuối là 1/n (n là số tự nhiên), ta chọn mẫu chung là 2^k với các thừa số lẻ không vượt quá n, trong đó k là số lớn nhất mà 2^k <= n. Chỉ có thừa số phụ của 1/2^k là số lẻ còn các thừa số phụ khác đều chẵn.
Còn cách giải khác nữa cùng trong sách Nâng cao và phát triển Toán 6 tập hai bạn có thể tham khảo thêm nhé. Chúc bạn học giỏi!
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tiếp tục xài chiêu đó, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> a > 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < c < 4 ---> a ko phải là số tự nhiên.
====================================
Cách khác (tổng quát hơn, trừu tượng hơn)
Quy đồng mẫu số :
Chọn mẫu số chung là M = BCNN(2;3;4;...;50) = k.2^5 = 32k (k là số tự nhiên lẻ)
Đặt T2 = M/2; T3 = M/3; ...; T50 = M/50
---> a = (T2+T3+ ... + T50) / M
Chú ý rằng T2,T3,...,T50 đều chẵn, chỉ riêng T32 = M/32 = k là lẻ, còn M chẵn
---> T2+T3+...T50 lẻ.Số lẻ ko thể là bội của số chẵn ---> c ko phải là số tự nhiên.
Cho S = 1/3 + 1/5 + 1/7 + ...........+ 1/101
Chứng minh S không phải là số tự nhiên
Ta có:
1/5 < 1/2
1/7 < 1/6
.............
1/101 < 1/90
Nên ta có:
1/3 + 1/5 + 1/7 + ... + 1/101 < 1/2 + 1/6 + ... + 1/90
Hay: S < + 1 - 1/10 < 1
Mặt khác, các phân số của S > 0 => S > 0
Nên: 0 < S < 1
=> S không phải là số tự nhiên
Chứng minh rằng 1/5+1/7+1/9+...+1/101 không phải là số tự nhiên
Chứng minh rằng 1/5+1/7+1/9+..+1/101 không phải là số tự nhiên?
tớ nghĩ là vậy vì kết quả là : 1/101 mà
cho A=1/5+1/7+...+1/101 , chứng minh rằng A ko phải là số tự nhiên
cho S=\(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}\)chứng tỏ S ko phải là số tự nhiên.
S=\(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}\)
S=\(\frac{1}{1+2}+\frac{1}{2+3}+\frac{1}{3+4}+...+\frac{1}{50+51}\)
S=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\)
S=1-\(\frac{1}{51}\)
S=\(\frac{50}{51}=1,02\)
1,02 ko phải là số tự nhiên.
Vậy S ko phải là số tự nhiên.
Chứng minh xong!
Nếu thấy đúng tik cho mk nhé!!!