Những câu hỏi liên quan
HA
Xem chi tiết
DH
28 tháng 6 2016 lúc 14:39

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k,y=3k,z=5k\)

Ta có: 

\(xyz=810\\ \Rightarrow2k.3k.5k=810\\ \Rightarrow30k^3=810\\ \Rightarrow k^3=810:30\\ \Rightarrow k^3=27\\ \Rightarrow k=3\)

Vậy:

x = 2k = 2.3 = 6

y = 3k = 3.3 = 9

z = 5k = 5.3 = 15

Bình luận (0)
ND
Xem chi tiết
LH
13 tháng 6 2017 lúc 17:01

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)(1)

đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)(2)

thay (2) vào (1), ta được:

\(xyz=2k\cdot3k\cdot5k=810\)

\(\Leftrightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)

từ đó

\(\Rightarrow\hept{\begin{cases}x=3\cdot2=6\\y=3\cdot3=9\\z=3\cdot5=15\end{cases}}\)

vậy x=6; y=9; z=15

Bình luận (0)
HT
30 tháng 5 2017 lúc 16:25

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\hept{\begin{cases}x=\frac{2y}{3}\\z=\frac{5y}{3}\end{cases}}\)thế vào \(xyz=810\)ta đc: \(\frac{2y.5y.y}{3.3}=810\Leftrightarrow y^3=729\Leftrightarrow y=9\Rightarrow x=6;z=15\)

Bình luận (0)
DC
30 tháng 5 2017 lúc 16:31

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz=810

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{xyz}{2.3.5}=\frac{810}{30}=27\)

Suy ra:

\(\frac{x}{2}=27\Rightarrow x=27.2=54\)

\(\frac{y}{3}=27\Rightarrow y=27.3=81\)

\(\frac{z}{5}=27\Rightarrow z=27.5=135\)

KL

Bình luận (0)
ZT
Xem chi tiết
SG
18 tháng 9 2016 lúc 11:05

Ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

=> \(\frac{x}{2}.\frac{x}{2}.\frac{x}{2}=\frac{y}{3}.\frac{y}{3}.\frac{y}{3}=\frac{z}{5}.\frac{z}{5}.\frac{z}{5}=\frac{x}{2}.\frac{y}{3}.\frac{z}{5}\)

=> \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{125}=\frac{810}{30}=27\)

=> \(\hept{\begin{cases}x^3=27.8=6^3\\y^3=27.27=9^3\\z^3=27.125=15^3\end{cases}}\)=> \(\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)

Vậy ...

Bình luận (0)
NV
Xem chi tiết
NT
31 tháng 8 2021 lúc 19:48

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
31 tháng 8 2021 lúc 19:59

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
VT
12 tháng 2 2018 lúc 13:54

a/

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)\(=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)\(\Rightarrow x=20;y=12;z=42\)

Bình luận (0)
VT
12 tháng 2 2018 lúc 14:06

b/\(3x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{3};7y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{7}\)\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+20}=2\)

\(\Rightarrow x=20;y=30;z=42\)

Bình luận (0)
NB
1 tháng 3 2018 lúc 22:40

d) Đặt \(\frac{x}{2}=k\Rightarrow x=2k\)\(\frac{y}{3}=k\Rightarrow y=3k\)\(\frac{z}{5}=k\Rightarrow z=5k\)

Thay x=2k, y=3k, z=5k vào xyz=810 ta được:

\(2k.3k.5k=810\)

\(30k^3=810\)

\(k^3=\frac{810}{30}=27\)

\(\Rightarrow k=3\)

Do đó: x = 2k \(\Rightarrow\)x = 2.3=6

             y = 3k\(\Rightarrow\)y = 3.3=9

             z = 5k \(\Rightarrow\)z = 5.3=15

Vậy x=6; y=9; z=15

Bình luận (0)
H24
Xem chi tiết
NP
26 tháng 12 2015 lúc 22:01

Goi x/2=y/3=z/4=k

=>x=2k   y=3k z=4k

=>2k3k4k=810 

=>24k^3=810

=>k^3=33,75

x=67,5

y=101,25

z=135

Bình luận (0)
TC
Xem chi tiết
BT
21 tháng 10 2019 lúc 15:12

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Ta có

\(xyz=2k\cdot3k\cdot5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=810:30=27\)

\(\Rightarrow k=3\)

Với \(k=3\)ta có

\(\hept{\begin{cases}x=2\cdot3\\y=3\cdot3\\z=5\cdot3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}}\)

Vậy..................

Bình luận (0)
 Khách vãng lai đã xóa
2U
21 tháng 10 2019 lúc 15:19

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và \(xyz=810\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Thay \(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)và \(xyz=810\)

Ta có : \(2k.3k.5k=810\)

            \(\left(2.3.5\right).\left(k.k.k\right)=810\)

           \(30.k^3=810\)

          \(k^3=810:30\)

         \(k^3=27\)

       \(k=3\)

Vì \(k=3\)

Ta có : \(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)

       

Bình luận (0)
 Khách vãng lai đã xóa
H24
21 tháng 10 2019 lúc 21:52

Trả lời:

 y=3

 *Tham khảo cách làm của bạn Kaito Kid!

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
NL
23 tháng 5 2016 lúc 9:15

b, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)     =>\(\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

=> xyz=2k.3k.5k=810

=> 30k3=810 =>k3=27 =>k=3

=>\(\hept{\begin{cases}x=2.3=6\\y=3.3=9\\z=5.3=15\end{cases}}\)

Bình luận (0)
HA
23 tháng 5 2016 lúc 9:26

K còn cách khá ạ

Bình luận (0)
TT
Xem chi tiết
NN
11 tháng 7 2019 lúc 8:09

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

Bình luận (0)
HS
11 tháng 7 2019 lúc 16:41

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

Bình luận (0)
HS
11 tháng 7 2019 lúc 16:43

d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)

Bình luận (0)