Tìm 1 số tự nhiên bé nhất khác 1 và chia số đó cho 2 , 3 , 4 , 5 và 6 đều có số dư bằng 1
Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 cùng có số dư bằng 1
Nếu số cần tìm bớt đi 1 đơn vị ta được số mới chia hết cho cả 2;3;4;5 và 6
Số bé nhất khác 1 chia hết cho cả 2;3;4;5;6 là 60
Vậy số cần tìm là
60+1=61
TÌM 1 SỐ TỰ NHIÊN BÉ NHẤT KHÁC 1 VÀ KHI CHIA SỐ ĐÓ CHO 2, 3, 4, 5 VÀ 6 THÌ CÙNG CÓ SỐ DƯ BẰNG 1
Bài 1:Tìm số tự nhiên bé nhất,khác 0 cùng chia hết cho cả 2,3,4,5 và 6.
Bài 2:Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2,3,4,5 và 6 thì cùng dư số dư bằng 1.
Bài 3:Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2,3,4,5 và 6 thì được số dư lần lượt 1,2,3,4 và 5.
Bài 4:Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19.Tìm số lớn.
Các bn nhớ để cách làm nha ! ^ ^
1)
SỐ ĐÓ LÀ : 2X3X4X5X6=720:6=120
2)
SỐ ĐÓ LÀ :
120+1=121
3)
SỐ ĐÓ LÀ
120-1=119
4)
SỐ LỚN LÀ
(133-19):(4-1)X4+19=171
Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2 ; 3 ; 4 ; 5 và 6 thì cùng có số dư bằng 1.
Tìm một số tự nhiên bé nhất khác 1 sao cho khi chia số đó cho 3; 4; 5; 6 và 7 đều dư 1.
Gọi số cần tìm là a (a $\in$∈N)
Vì a chia cho 3;4;5;6 và 7 đều dư 1 nên a - 1 chia hết cho 3;4;5;6 và 7 mà a là bé nhất
=> a - 1 = BCNN(3,4,5,6,7)
Ta có :
3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2 . 3 ; 7 = 7
=> a - 1 = 22 . 3 . 5 . 7 = 420
=> a = 420 + 1 = 421
Vậy số cần tìm là 421
Gọi số cần tìm là a
Theo đề bài ta có:
a chia 3 dư 1
a chia 4 dư 1
a chia 5 dư 1
a chia 6 dư 1
a chia 7 dư 1
=> a + 1 chia hết cho 3 ; 4 ; 5 ; 6 ; 7 mà a bé nhất
=> a + 1 là BCNN(3 ; 4; 5 ;6 ; 7) = 22 x 3 x 5 x 7 =420
=> a + 1 = 420
=> a = 419
Gọi số tự nhiên cần tìm là a, ta có:
Vì khi chia a cho 3 ; 4 ; 5 ; 6 ; 7 đều dư 1 => a - 1 chia hết cho 3 ; 4 ; 5 ; 6 ; 7 => (a - 1) thuộc BC(3 ; 4 ; 5 ; 6 ; 7)
3 = 3
4 = 22
5 = 5
6 = 2.3
7 = 7
BC(3 ; 4 ; 5 ; 6 ; 7) = 22.3.5.7 = 420
a - 1 = 420
a = 420 + 1
a = 421
Vậy, số tự nhiên cần tiềm là 421
Tìm một số tự nhiên bé nhất khác 1 sao cho khi chia số đó cho 3; 4; 5; 6 và 7 đều dư 1.
Giải:
Gọi số cần tìm là a. Theo đề bài, a chia cho 3; 4; 5; 7 đều dư 1 nên b = a - 1 chia hết cho 3; 4; 5; 6; 7.
b chia hết cho 4 và 5 nên b có tận cùng là 0.
Xét các trường hợp sau:
- b có 1 chữ số: b = 0 -> a = 1 loại.
- b có 2 chữ số: b có tận cùng bằng 0 và chia hết cho 7 nên b = 70 loại vì 70 không chia hết cho 3.
- b có 3 chữ số: đặt b = xy0.
+ Vì b chia hết cho 4 nên y bằng 0; 2; 4; 6 hoặc 8;
+ Vì xy0 chia hết cho 7 nên b có thể là: 140; 280; 420; 560; 700; 840 hoặc 980.
Trong các số trên chỉ có 420 và 840 chia hết cho 3 và 6. Nên b bằng 420 hoặc 840 => a bằng 421 hoặc 841.
Vậy số bé nhất cần tìm là: 421.
Tìm một số tự nhiên bé nhất khác 1 sao cho khi chia số đó cho 3; 4; 5; 6 và 7 đều dư 1.
Giải:
Gọi số cần tìm là a. Theo đề bài, a chia cho 3; 4; 5; 7 đều dư 1 nên b = a - 1 chia hết cho 3; 4; 5; 6; 7.
b chia hết cho 4 và 5 nên b có tận cùng là 0.
Xét các trường hợp sau:
- b có 1 chữ số: b = 0 -> a = 1 loại.
- b có 2 chữ số: b có tận cùng bằng 0 và chia hết cho 7 nên b = 70 loại vì 70 không chia hết cho 3.
- b có 3 chữ số: đặt b = xy0.
+ Vì b chia hết cho 4 nên y bằng 0; 2; 4; 6 hoặc 8;
+ Vì xy0 chia hết cho 7 nên b có thể là: 140; 280; 420; 560; 700; 840 hoặc 980.
Trong các số trên chỉ có 420 và 840 chia hết cho 3 và 6. Nên b bằng 420 hoặc 840 => a bằng 421 hoặc 841.
Vậy số bé nhất cần tìm là: 421.
Tìm một số tự nhiên bé nhất khác 1 sao cho khi chia số đó cho 3; 4; 5; 6 và 7 đều dư 1.
Giải:
Gọi số cần tìm là a. Theo đề bài, a chia cho 3; 4; 5; 7 đều dư 1 nên b = a - 1 chia hết cho 3; 4; 5; 6; 7.
b chia hết cho 4 và 5 nên b có tận cùng là 0.
Xét các trường hợp sau:
- b có 1 chữ số: b = 0 -> a = 1 loại.
- b có 2 chữ số: b có tận cùng bằng 0 và chia hết cho 7 nên b = 70 loại vì 70 không chia hết cho 3.
- b có 3 chữ số: đặt b = xy0.
+ Vì b chia hết cho 4 nên y bằng 0; 2; 4; 6 hoặc 8;
+ Vì xy0 chia hết cho 7 nên b có thể là: 140; 280; 420; 560; 700; 840 hoặc 980.
Trong các số trên chỉ có 420 và 840 chia hết cho 3 và 6. Nên b bằng 420 hoặc 840 => a bằng 421 hoặc 841.
Vậy số bé nhất cần tìm là: 421.
Giải:
Gọi số cần tìm là a. Theo đề bài, a chia cho 3; 4; 5; 7 đều dư 1 nên b = a - 1 chia hết cho 3; 4; 5; 6; 7.
b chia hết cho 4 và 5 nên b có tận cùng là 0.
Xét các trường hợp sau:
- b có 1 chữ số: b = 0 -> a = 1 loại.
- b có 2 chữ số: b có tận cùng bằng 0 và chia hết cho 7 nên b = 70 loại vì 70 không chia hết cho 3.
- b có 3 chữ số: đặt b = xy0.
+ Vì b chia hết cho 4 nên y bằng 0; 2; 4; 6 hoặc 8;
+ Vì xy0 chia hết cho 7 nên b có thể là: 140; 280; 420; 560; 700; 840 hoặc 980.
Trong các số trên chỉ có 420 và 840 chia hết cho 3 và 6. Nên b bằng 420 hoặc 840 => a bằng 421 hoặc 841.
Vậy số bé nhất cần tìm là: 421.
Bài toán 1: Tìm số tự nhiên bé nhất khác 1 và khi chia số đó cho 2; 3; 4; 5 và 6 thì cùng có số dư bằng 1.
Bài toán 2: Tìm số tự nhiên bé nhất sao cho khi chia số đó cho 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4; 5 và 6 thì được số dư lần lượt là 1; 2; 3; 4 và 5.
Bài toán 3: Hai số tự nhiên có hiệu là 133 và biết khi lấy số lớn chia cho số bé thì được thương là 4 và số dư là 19. Tìm số lớn.
Bài toán 4: Hai số tự nhiên có tổng là 258 và biết khi lấy số lớn chia cho số bé thì được thương là 2 và số dư là 21. Tìm số bé.
Bài toán 5: Hai số tự nhiên có hiệu là 245 và biết khi lấy số lớn chia cho số bé thì được thương là 3 và số dư laf 41. Tìm số lớn.
Ai trả lời cho mk cũng sẽ được tick đúng và đặc biệt là người nhanh nhất. chỉ cần ghi đáp án thôi nha! Mk cảm ơn các bạn
à bài này t học qua rồi
nhưng t ngại làm
bạn chờ người khác làm nhé
ủa mà bài này dễ mà cho hỏi bạn học lớp mấy vậy