Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NH
Xem chi tiết
NQ
Xem chi tiết
AH
25 tháng 6 2024 lúc 21:50

1/

Xét hiệu $(x+1)^2-4x^2=(x+1)^2-(2x)^2=(x+1-2x)(x+1+2x)$

$=(1-x)(3x+1)$
Do $x\in (0;1)$ nên $1-x>0; 3x+1>0$

$\Rightarrow (x+1)^2-4x^2>0\Rightarrow (x+1)^2> 4x^2$

Bình luận (0)
AH
25 tháng 6 2024 lúc 21:58

2/

Xét hiệu:

$(1+x+y)^2-4(x^2+y^2)=x^2+y^2+1+2x+2y+2xy-4x^2-4y^2$

$=1+2x+2y+2xy-3x^2-3y^2$

$=2x(1-x)+2y(1-y)+1+2xy-x^2-y^2$
Vì $x,y\in (0;1)$ nên: 

$2x(1-x)>0$

$2y(1-y)>0$

$(x-1)(y-1)>0\Rightarrow xy+1> x+y=x.1+y.1> x^2+y^2$

$\Rightarrow 1+xy-x^2-y^2>0$

$\Rightarrow 1+2xy-x^2-y^2>0$

Suy ra: $2x(1-x)+2y(1-y)+1+2xy-x^2-y^2>0$

$\Rightarrow (1+x+y)^2> 4(x^2+y^2)$

Bình luận (0)
H24
Xem chi tiết
LD
28 tháng 3 2021 lúc 10:26

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
BH
25 tháng 3 2019 lúc 17:42

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)

Áp dụng BĐT cô si ,ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)

Vậy ta được đpcm

ta có:

\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)

Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha 

Bình luận (0)
CN
Xem chi tiết
ST
20 tháng 6 2018 lúc 11:43

Đặt A=(x-1)(x-2)(x-3)(x-4)

=(x-1)(x-4)(x-2)(x-3)

=(x2-4x-x+4)(x2-3x-2x+6)

=(x2-5x+4)(x2-5x+6)

Đặt x2-5x+5=t (t thuộc Z)

Khi đó A=(t-1)(t+1)=t2-1=(x2-5x+5)2-1

Vì \(\left(x^2-5x+5\right)^2\ge0\Rightarrow\left(x^2-5x+5\right)^2-1\ge-1\) hay A \(\ge\)-1

Vậy...

Bình luận (0)
A2
20 tháng 6 2018 lúc 11:22

chiuj

Bình luận (0)
QB
Xem chi tiết
VD
Xem chi tiết
NN
Xem chi tiết
VH
15 tháng 7 2019 lúc 8:20

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

Bình luận (0)
PL
Xem chi tiết
TP
4 tháng 10 2018 lúc 18:06

ez game

a) Ta có | x | >= 0 ; |x+1| >= 0 ; |x+2| >= 0 ; |x+3| >= 0

=> |x| + |x+1| + |x+2| + |x+3| >= 0

=> 6x >= 0

=> x >=0 ( đpcm )

b) Từ điều kiện x >= ( ở câu a )

=> x + x + 1 + x + 2 + x + 3 = 6x

=> 4x + 6 = 6x

=> 6 = 6x - 4x

=> 6 = 2x

=> x = 3

Vậy x = 3

Bình luận (0)
TP
4 tháng 10 2018 lúc 18:09

a) Vì |x| và |x+1| và |x+2| và |x+3| đều >= 0 với mọi x

=> |x| + |x+1| + |x+2| + |x+3| >= 0

=> 6x >= 0

=> x >= 0 ( đpcm )

b) Từ điều kiện x >= 0 ( ở câu a )

=> x + x + 1 + x + 2 + x + 3 = 6x

=> 4x + 6 = 6x

=> 6 = 6x - 4x

=> 6 = 2x

=> x = 3

Vậy x = 3

Bình luận (0)
CD
4 tháng 10 2018 lúc 18:09

ngu ngu ngu ngu ngu

Bình luận (1)