Tìm x biết:
\(\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right).x=1\)
Các bạn giúp nhé
Tớ đố bạn nào làm được nhé :
\(\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)x=1\)
\(\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)
\(\frac{12}{25}.x=1\)
\(\Rightarrow x=1:\frac{12}{25}\)
\(\Rightarrow x=\frac{25}{12}\)
( \(\frac{1}{2.3}+...+\)\(\frac{1}{49.50}\)) x = 1
( \(\frac{1}{1}-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)) x = 1
( \(1-\frac{1}{50}\)) x = 1
\(\frac{49}{50}\). x = 1
x = 1 : \(\frac{49}{50}\)
x = \(\frac{50}{49}\)
Vậy x = \(\frac{50}{49}\)
\(\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdot\cdot\cdot+\frac{1}{49\cdot50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdot\cdot\cdot+\frac{1}{49}-\frac{1}{50}\right)x=1\)
\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)
\(\frac{12}{25}x=1\)
\(x=\frac{25}{12}\)
Tìm x biết
|\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+\left|x+\frac{1}{3.4}\right|+...+\left|x+\frac{1}{99.100}\right|=100x\)
Gỉai nhanh giúp mình nha mn. Cảm ơn trước nha
B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\)(x thuộc Z)
tính B
các bn giúp mk nhé mk tk
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(=1-\frac{1}{x+1}=\frac{x+1}{x+1}-\frac{1}{x+1}=\frac{x}{x+1}\)
Tìm x bt:
\(\left[x+\frac{1}{1.2}\right] +\left[x+\frac{1}{2.3}\right]+\left[x+\frac{1}{3.4}\right]+...+\left[x+\frac{1}{99.100}\right]=100x\)
cái [] là trị tuyệt đối nhé
các giá trị tuyệt đối trên có tổng lớn hơn hoặc bằng 0(>=0)
=>100x>=0
=>x>=0 =>x+1/(1.2) >0 ;x+1/(2.3)>0;x+1/(3.4);.....;x+1/(99.100)>0
=> ta có thể phá dấu giá trị tuyệt đối
=>100x=x+x+...+x(có 99. x)+(1/(1.2)+1/(2.3)+..+1/(99.100))
=>100x=99x+99/100
=>x=99/100
tìm x biết
a) \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+.....+ \(\frac{1}{49.50}\)= \(\frac{49}{x-5}\)
b) \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)+....+ \(\frac{1}{\left(x-1\right).x}\)= \(\frac{15}{x}\)
GIÚP MÌNH NHA AI TRẢ LỜI NHANH MÌNH SẼ TÍCH CHO
tìm x, biết
a) |x+1|+|x+2|+|x+3|+...+|x+99|=100x
b) \(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{49.50}\right|=50.x\)
\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+99\right|=100x\)
\(\left|x+1\right|\ge0;\left|x+2\right|\ge0;...;\left|x+99\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)
\(\Rightarrow99x+1+2+3+...+99=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow-x=-4950\)
\(\Rightarrow x=4950\)
\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{49\cdot50}\right|=50x\)
\(\left|x+\frac{1}{1\cdot2}\right|\ge0;\left|x+\frac{1}{2\cdot3}\right|\ge0;...;\left|x+\frac{1}{49\cdot50}\right|\ge0\)
\(\Rightarrow50x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{49\cdot50}\)
\(\Rightarrow49x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
tu lam
\(a;\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+..............+\left|x+99\right|=100x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+3\right|\ge0;.............;\left|x+99\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)
Với \(x\ge0\).Từ (1) \(\Rightarrow x+1+x+2+x+3+..................+x+99=100x\)
\(\Rightarrow\left(x+x+x+........+x\right)+\left(1+2+3+..........+99\right)=100x\)
\(\Rightarrow99x+4950=100x\)
\(\Rightarrow x=4950\)(t/m đk x > = 0)
\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+.........+\left|x+\frac{1}{49.50}\right|=50x^{(∗)}\)
\(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;............;\left|x+\frac{1}{49.50}\right|\ge0\)
\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow50x\ge0\Rightarrow x\ge0\)
Với x > = 0 .Từ (*) \(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+............+x+\frac{1}{49.50}=50x\)
\(\Rightarrow\left(x+x+x+.......+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\right)=50x\)
\(\Rightarrow49x+\left(1-\frac{1}{50}\right)=50x\)
\(\Rightarrow49x+\frac{49}{50}=50x\)
\(\Rightarrow x=\frac{49}{50}\)(t/m đk \(x\ge0\))
Tìm x biết: \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right).\left(x-1\right)=x-\frac{1}{3}\)
\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)
=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)
=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)
=> 27x - 27 = 30x - 10
=> 27x - 30x = -10 + 27
=> -3x = 17
=> x = -17/3.
Tìm x, biết
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2.\left(x+1\right)}=\frac{99}{100}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\frac{3}{2}=1\)
\(\Leftrightarrow3x=-\frac{1}{2}\)
\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)
Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x=99\)
a) => ( x + 1/2 ) . 3 = 1
=> 3x + 3/2 = 1
=> 3x = 1 - 3/2
=> 3x = -1/2
=> x = -1/2 : 3 = -1/6
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}-\frac{1}{2}\)
\(\Leftrightarrow x=-\frac{1}{6}\)
\(\frac{2}{2.3}+\)\(\frac{2}{3.4}+\)\(\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2008}{2010}\)
Bài này là bài tìm x các bạn giúp mình và ghi lời giải chi tiết nhé mình tick cho
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)