Những câu hỏi liên quan
SB
Xem chi tiết
TD
7 tháng 5 2017 lúc 20:40

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}.x=1\)

\(\Rightarrow x=1:\frac{12}{25}\)

\(\Rightarrow x=\frac{25}{12}\)

Bình luận (0)
HM
7 tháng 5 2017 lúc 20:41

\(\frac{1}{2.3}+...+\)\(\frac{1}{49.50}\)) x = 1

\(\frac{1}{1}-\frac{1}{2}+...+\frac{1}{49}-\frac{1}{50}\)) x = 1

\(1-\frac{1}{50}\)) x = 1

    \(\frac{49}{50}\). x = 1 

                    x = 1 : \(\frac{49}{50}\)

                    x = \(\frac{50}{49}\)

           Vậy x = \(\frac{50}{49}\)

Bình luận (0)
H24
7 tháng 5 2017 lúc 20:43

\(\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdot\cdot\cdot+\frac{1}{49\cdot50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdot\cdot\cdot+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

\(x=\frac{25}{12}\)

Bình luận (0)
PT
Xem chi tiết
H24
Xem chi tiết
LP
6 tháng 9 2017 lúc 20:15

\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\)

\(=1-\frac{1}{x+1}=\frac{x+1}{x+1}-\frac{1}{x+1}=\frac{x}{x+1}\)

Bình luận (0)
NN
6 tháng 9 2017 lúc 20:11

có câu tương tự đó bn^^

Bình luận (0)
H24
6 tháng 9 2017 lúc 20:12

có ai lầm đâu mà tương tự

Bình luận (0)
NV
Xem chi tiết
TQ
16 tháng 10 2018 lúc 18:59

các giá trị tuyệt đối trên có tổng lớn hơn hoặc bằng 0(>=0)

=>100x>=0

=>x>=0 =>x+1/(1.2) >0 ;x+1/(2.3)>0;x+1/(3.4);.....;x+1/(99.100)>0

=> ta có thể phá dấu giá trị tuyệt đối 

=>100x=x+x+...+x(có 99. x)+(1/(1.2)+1/(2.3)+..+1/(99.100))

=>100x=99x+99/100

=>x=99/100

Bình luận (0)
VK
Xem chi tiết
H24
26 tháng 2 2018 lúc 18:19

a)hình như =55

Bình luận (0)
()
Xem chi tiết
NU
3 tháng 2 2019 lúc 22:08

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+99\right|=100x\)

\(\left|x+1\right|\ge0;\left|x+2\right|\ge0;...;\left|x+99\right|\ge0\)

\(\Rightarrow100x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)

\(\Rightarrow99x+1+2+3+...+99=100x\)

\(\Rightarrow99x+4950=100x\)

\(\Rightarrow-x=-4950\)

\(\Rightarrow x=4950\)

\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{49\cdot50}\right|=50x\)

\(\left|x+\frac{1}{1\cdot2}\right|\ge0;\left|x+\frac{1}{2\cdot3}\right|\ge0;...;\left|x+\frac{1}{49\cdot50}\right|\ge0\)

\(\Rightarrow50x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{49\cdot50}\)

\(\Rightarrow49x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=50x\)

\(\Rightarrow49x+\frac{49}{50}=50x\)

tu lam 

Bình luận (0)
DP
4 tháng 2 2019 lúc 20:29

\(a;\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+..............+\left|x+99\right|=100x^{\left(1\right)}\)

Ta có \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+3\right|\ge0;.............;\left|x+99\right|\ge0\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)

Với \(x\ge0\).Từ (1) \(\Rightarrow x+1+x+2+x+3+..................+x+99=100x\)

\(\Rightarrow\left(x+x+x+........+x\right)+\left(1+2+3+..........+99\right)=100x\)

\(\Rightarrow99x+4950=100x\)

\(\Rightarrow x=4950\)(t/m đk x > =  0)

\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+.........+\left|x+\frac{1}{49.50}\right|=50x^{(∗)}\)

\(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;............;\left|x+\frac{1}{49.50}\right|\ge0\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow50x\ge0\Rightarrow x\ge0\)

Với x > = 0 .Từ (*) \(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+............+x+\frac{1}{49.50}=50x\)

\(\Rightarrow\left(x+x+x+.......+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\right)=50x\)

\(\Rightarrow49x+\left(1-\frac{1}{50}\right)=50x\)

\(\Rightarrow49x+\frac{49}{50}=50x\)

\(\Rightarrow x=\frac{49}{50}\)(t/m đk \(x\ge0\))

Bình luận (0)
TM
Xem chi tiết
MH
2 tháng 2 2016 lúc 15:07

\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)

=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)

=> 27x - 27 = 30x - 10

=> 27x - 30x = -10 + 27

=> -3x = 17

=> x = -17/3.

Bình luận (0)
LH
Xem chi tiết
DP
22 tháng 7 2017 lúc 8:46

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\frac{3}{2}=1\)

\(\Leftrightarrow3x=-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)

Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x=99\)

Bình luận (0)
TX
22 tháng 7 2017 lúc 8:38

a) => ( x + 1/2 ) . 3 = 1

=> 3x + 3/2 = 1

=> 3x = 1 - 3/2

=> 3x = -1/2

=> x = -1/2 : 3 = -1/6

Bình luận (0)
DD
22 tháng 7 2017 lúc 8:42

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{3}\)

\(\Leftrightarrow x=\frac{1}{3}-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{6}\)

Bình luận (0)
PY
Xem chi tiết
DH
22 tháng 2 2018 lúc 11:35

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)

Bình luận (0)