CMR n=1984 là số tự nhiên lớn nhất để số 4^31+4^1008+4^n là số chính phương
Tìm số tự nhiên n để n2+ 31n + 1984 là số chính phương.
Tìm số tự nhiên n để n2+31n+1984 là số chính phương
Tìm số tự nhiên n để n2+31n+1984 là số chính phương
Câu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link này nhé!
Tìm STN n max sao cho
4^n+4^31+4^1984 là số chính phương
Tìm các STN m,n sao cho 2^n+3^m là số chính phương
Tìm x,y sao cho 9^x-3^x=y^2+2y+3
CMR: Mọi số tự nhiên n>1 thì: n^4+4 là số chính phương
https://olm.vn/hoi-dap/question/997557.html
Trong đây mình đã làm bài như vậy rồi nhé ! :D
Cho n là một số tự nhiên lớn hơn 1. CMR \(n^6+2n^3-n^4+2n^2\) không là số chính phương
chứng minh bài này bằng phản chứng
phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
\(\left(n+1\right)^2n^2\left[\left(n-1\right)^2+1\right]=y^2\)
muốn pt trên đúng thi \(\left(n-1\right)^2+1\)cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
mà với n>1 =>n-1>0=>mâu thuẫn
Phân tích thành nhân tử giả sử biểu thức đề bài cho là một số chính phương ta được
Muốn pt trên đúng thi cũng là một số chính phương. mà tổng của một số chính phương và 1 là một số chính phương khi và chỉ khi số chính phương đó là 0
Mà với n>1 =>n-1>0=>mâu thuan
a. tìm a là số tự nhiên để 17a+8 là số chính phương
b. tìm a là số tự nhiên để 13a+a là số chính phương
c. tìm n là số tự nhiên sao cho 3n+4 là số chính phương
d. tìm n là số tự nhiên sao cho 2n+9 là số chính phương
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
1. Chứng minh rằng nếu các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) − 2y là số chính phương thì x = y.
2. Tìm các số nguyên dương n để n4 + 2n3 + 3n3 + 3n + 7 là số chính phương.
3. Tìm các số tự nhiên m,n thỏa mãn 2m + 3 = n2.
4. Tìm các số tự nhiên n để n2 + n + 2 là tích của k số nguyên dương liên tiếp với k ≥ 2.
5. Tìm các số tự nhiên n để 36n − 6 là tích của k số nguyên dương liên tiếp với k ≥ 2.
6. Tìm số tự nhiên n lớn nhất để 427 +4500 +4n là số chính phương.
7. Tìm các số nguyên tố p để 2p - 1 - 1 / p là số chính phương
CMR: (n+1)4+n4+1 ko là số chính phương vơi mọi n là số tự nhiên khác 0
Ta có (n+1)4+n4+1= (n+1)4-n2+(n4+n2+1)
= (n2+2n+1)2-n2+(n4+n3+n2-n3-n2-n+n2+n+1)
= (n2+3n+1)(n2+n+1)+[n2(n2+n+1)-n(n2+n+1)+(n2+n+1)]
= (n2+3n+1)(n2+n+1)+(n2+n+1)(n2-n+1)
= (n2+n+1)(2n2+2n+2)
= 2(n2+n+1)2
Do 2 không phải là bình phương của một số tự nhiên nên (n+1)4+n4+1 không là bình phương của một số tự nhiên
Vậy (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên
Mk thêm vào một chút nhé.
Do 2 ko là bình phương của một số tự nhiên và n khác 0 nên 2(n2+n+1)2 ko là bình phương của một số tự nhiên n khác 0
=> (n+1)4+n4+1 ko là số chính phương với mọi n là số tự nhiên khác 0