Chứng minh rằng 3 < 1+1/2+1/3+1/4+1/5+...+1/62+1/63<6
Chứng minh rằng:
1+a+a^2+a^3+...+a^62+a^63=(1+a)(1+a^2)(1+a^4)...(1+a^32)
Chứng minh rằng 1+1/2+1/3+...+1/62+1/63+1/64>4>làm ơn hãy giúp mình.muộn rồi mà mai cô giáo bắt nộp
mình cũng chưa làm đc bài này làm thế nào hả bạn?
1/2+1/3+1/4+….+1/63+1/6t4>3
< => (1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+…+1/16)+(1/17+1/18+….+1/31)+(1/32+1/33+…..+1/64)>4
Mà 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/2
Tương tự ta có 1/9+1/10+…+1/16>8/16=1/2
1/17+1/18+…+1/31>16/31=1/2
Và 1/32+1/33+…+1/64>32/64=1/2
Mai mình cũng phải nộp bài này mà ko biết làm sao bây giờ?
Chứng tỏ rằng 1+1/2+1/3+1/4+...+1/62+1/63+1/64>4
Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64
A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)
Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2
1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2
1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2
Vậy A > 4
Ta có A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/64
A = 1 + (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + ... + 1/8) + (1/9 + 1/10 + 1/11 + ... + 1/16) + (1/17 + 1/18 + 1/19 + ... + 1/32) + (1/33 + 1/34 + 1/35 + ... + 1/64)
=> A > 1 + (1/2 + 1/4.2) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32
A > 1 + 1 + 1/2 + 1/2 + 1/2 + 1/2
A > 4 (DPCM).
chứng minh rằng s=1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/2
Chứng minh rằng M<6 biết :
M =1 + 1/2 + 1/3 + 1/4 + ... + 1/62 + 1/63
ai trả lời nhanh và đúng nhất cho ít nhất 3 Tick nhé ^_^
Chứng tỏ rằng:
\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{62}+\dfrac{1}{63}+\dfrac{1}{64}>4\)
Chứng minh rằng:\(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{121}-\dfrac{1}{122}+\dfrac{1}{123}=\dfrac{1}{62}+\dfrac{1}{63}+...+\dfrac{1}{122}+\dfrac{1}{123}\)
chứng minh rằng: S=1/5+1/13+1`/14+1/15+1/61+1/62+1/63<1/2
\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}
Ta có:
S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3
=>S<1/5+1/4+1/20=10/20
Hay S<1/2
Chứng minh rằng M < 6 biết:
M = \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{62}+\frac{1}{63}\)
Giúp mk nhé Mai.
\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)
\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)
\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)
\(M< 1+1+1+1+1+1\)
\(M< 1.6=6\left(đpcm\right)\)