Những câu hỏi liên quan
HP
Xem chi tiết
NK
Xem chi tiết
H24
7 tháng 3 2016 lúc 12:45

mình cũng chưa làm đc bài này làm thế nào hả bạn?

Bình luận (0)
PT
25 tháng 3 2016 lúc 12:49

1/2+1/3+1/4+….+1/63+1/6t4>3
< => (1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+…+1/16)+(1/17+1/18+….+1/31)+(1/32+1/33+…..+1/64)>4
Mà 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/2
Tương tự ta có 1/9+1/10+…+1/16>8/16=1/2
1/17+1/18+…+1/31>16/31=1/2
Và 1/32+1/33+…+1/64>32/64=1/2

Bình luận (0)
QH
25 tháng 3 2016 lúc 21:58

Mai mình cũng phải nộp bài này mà ko biết làm sao bây giờ?

Bình luận (0)
LA
Xem chi tiết
LA
20 tháng 7 2016 lúc 19:10

Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64

A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)

Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1

1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2

1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2

1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2

Vậy A > 4

Bình luận (0)
LA
17 tháng 7 2016 lúc 19:56

Xin ai giải hộ cái

Bình luận (0)
NP
6 tháng 7 2017 lúc 9:36

Ta có A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/64

          A = 1 + (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + ... + 1/8) + (1/9 + 1/10 + 1/11 + ... + 1/16) + (1/17 + 1/18 + 1/19 + ... + 1/32) + (1/33 + 1/34 + 1/35 + ... + 1/64)

=> A > 1 +  (1/2 + 1/4.2) + 1/8.4 + 1/16.8 + 1/32.16 + 1/64.32

     A > 1 + 1 + 1/2 + 1/2 + 1/2 + 1/2

    A > 4 (DPCM).

Bình luận (0)
LM
Xem chi tiết
MT
Xem chi tiết
KJ
Xem chi tiết
TP
Xem chi tiết
NG
Xem chi tiết
SN
31 tháng 5 2015 lúc 10:05

\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}

Bình luận (0)
RL
31 tháng 5 2015 lúc 10:03

Ta có:

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3

=>S<1/5+1/4+1/20=10/20

Hay S<1/2

Bình luận (0)
NH
Xem chi tiết
SG
21 tháng 10 2016 lúc 12:55

\(M=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{62}+\frac{1}{63}\)

\(M=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+\left(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{31}\right)+\left(\frac{1}{32}+\frac{1}{33}+...+\frac{1}{63}\right)\)

\(M< 1+\frac{1}{2}.2+\frac{1}{4}.4+\frac{1}{8}.8+\frac{1}{16}.16+\frac{1}{32}.32\)

\(M< 1+1+1+1+1+1\)

\(M< 1.6=6\left(đpcm\right)\)

Bình luận (2)