Chứng tỏ rằng ko tồn tại các số nguyên a,b,c thỏa mãn a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=2019^2020
Cho các số thực a,b,c thỏa mãn \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\). Chứng tỏ rằng trong 3 số a,b,c tồn tại a,b,c tồn tại 1 số không âm, tồn tại 1 số không dương.
Gs a+b+c>1/a+1/b+1/c nhưng không t/m một và chỉ một trong 3 số a,b,c lớn hơn 1 TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1) TH2 có 2 số lớn hơn 1 Gs a>1,b>1,c<1 suy ra a-1>0,b-1>0,c-1<0 suy ra (a-1)(b-1)(c-1)<0 suy ra abc+a+b+c-(ab+bc+ca)-1<0 suy ra a+b+c<ab+bc+ca suy ra a+b+c<abc/c+abc/a+abc/b suy ra a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai) suy ra đpcm
Cho a, b, c là các số nguyên thỏa mãn a\(^{2019}+b^{2020}+c^{2021}\) là bội của 6. Chứng minh rằng: a\(^{2021}+b^{2022}+c^{2023}\) cũng là bội của 6.
1. Cho các số nguyên a, b, c, d thỏa mãn: a + b = c + d; ab + 1 = cd
Chứng tỏ rằng: c = d
2. Có tồn tại cặp số nguyên (a; b) nào thỏa mãn đẳng thức sau:
a) -252a + 72b = 2013
b) 512a - 104 = -2002
3. Cho m và n là các số nguyên dương:
A = \(\frac{2+4+6+...+2m}{m}\)
B = \(\frac{2+4+6+...+2n}{n}\)
Biết A<B, hãy so sánh m và n
4. Cho a, b, c, d thuộc Z thỏa mãn: a - ( b + c ) = d. Chứng tỏ rằng: a - c = b + d
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
chứng minh rằng: ko tồn tại số nguyên tố a;b;c thỏa mãn a2=b2+c2
giải nhanh, đúng và đầy đủ nhất mk tick cho!
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Các thần đồng đâu hết rùi
Giải hộc cái bài nào
Cho các số nguyên a,b,c,d thỏa mãn : a + b = c + d và \(a^2+b^2=c^2+d^2\)
Chứng minh rằng \(a^{2018}+b^{2019}=c^{2019}+d^{2018}\)
đội tuyển toán ah,sao bài khó zậy
bn này đội tuyển toán đấy, năm lp 6 đc giải nhất huyện cơ mà
Chứng minh rằng không tồn tại các số nguyên a,b,c,d thỏa mãn abcd=(2d+1)^2 và a^2=b^2+c^2+d^2.
Giúp em với cả nhà ơi. Thanks ạ.
Chứng tỏ rằng không tồn tại các số nguyên a, b, c và d thỏa mãn đồng thời các điều kiện sau :
a.b.c.d - a = 2005 ; a.b.c.d - b = 2009 ; a.b.c.d - c = 2011 ; a.b.c.d - d = 2015
Cảm ơn bạn giải hộ nhé.
Ta có:
a.b.c.d-a =a.[b.c.d-1]=2005
a.b.c.d-b =b.[a.c.d-1]=2009
a.b.c.d-c =c.[b.a.d-1]=2011
a.b.c.d-d =d.[b.c.a-1]=2015