Chứng minh rằng tồn tai một bội của 17 tận cùng là 219
Chứng minh rằng trong 11 STN bất kì bao giờ cũng có ít nhất 2 số có cs tận cùng giống nhau thì hiệu của chúng chia hết cho 10
Chứng tỏ rằng tồn tai 1 bội của 1989 dc viết bởi toàn cs 1 và cs 0
Gợi ý : Dùng phương pháp Đi-rích-lê
Làm nhanh đúng mk tick Mk cần gấp
Chứng minh rằng tồn tại số tự nhiên k sao cho 2013k có bốn chữ số tận cùng là 0001
Chứng Minh Rằng :tồn tại 1 số tự nhiên sao cho 7n có tận cùng là 001
1.Có.......số tự nhiên là bội của 25 đồng thời là ước của 300.
2.số nguyên tố lớn nhất có dạng *31 là......
3.số tự nhiên nhỏ nhất tỏa bởi các chữ số ba, chia hết cho 9 là.......
4.cho một số tự nhiên có chữ số tận cùng là 5. Biết rằng nếu xóa chữ số tận cùng này thì được số mới nhỏ hơn số ban đầu 1994 đơn vị. Số đó là........
1.Có 6 số tự nhieenlaf bội của 25 đồng thời là ước của 300
1.Có 6 STN là bội của 25 đồng thời là ước của 300. 2.Số nguyên tố lớn nhất có dạng *31 là 631 3.33 4.2215 nha (ai thấy đúng thì tích cho mik nha)
Bài 5 : Chứng minh rằng nếu a là bội của c thì
a) (-a) là bội của b
b) ( -b) là ước của a
Chứng minh rằng nếu 2 số a ; b là hai số nguyên khác 0 và a là bội của b.b là bội của a thì a=b hoặc a=-b
a vừa là ước vừa là bội của b thì chắc chắn |a|=b hay a=b hoặc a=-b
có thể chứng minh đơn giản như sau: giả sử a= bx và b=ay ( với x ; y là 2 số nguyên)
thế b=ay vào a=bx ta được: a= axy => xy=1 vì x và y nguyên nên
x=1 và y=1 hoặc x=-1 và y=-1 thay x và y vào điều giả sử ta được a=b hoặc a=-b
Chứng minh rằng số chính phương có chữ số tận cùng là 5 thì chữ số hàng chục là 2
A là một số tròn chục, bỏ chữ số 0 tận cùng của A ta được một số mới. Thêm một chữ số 0 vào bên phải của A ta được một số mới khác. Tìm A, biết rằng trung bình cộng của 3 số đó là 36963
bỏ chữ 0 tận cùng thì giảm 10 lần,thêm 1 chữ số 0 vào bên phải thì gấp 10 lần.coi số sau khi bớt là 1 phần số đó là 10 phần số sau khi thêm là 100 phần ta có tổng số phần là:1 +10+100=111 phần.số sau khi bớt là :36963 :111=333.suy ra a là 3330
Bài 1. Chứng minh rằng 8102 - 2102 chia hết cho 10.
Bài 2 . Tìm hai chữ số tận cùng của 2100.
Bài 3 . Tìm hai chữ số tận cùng của 71991
a) Ta có \(8^2=64\)
\(8^4=8^2=64^2=...6\) (tận cùng là 6)
=> \(\left(8^4\right)^n=\left(...6\right)^n=...6\)
Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)
Tương tự: \(\left(2^4\right)^n=16^n=...6\)
=> \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)
Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10
b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\)
c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3
\(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)
jEm có cách khác cô ạ !
Bài 1 .
Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :
8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,
2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .
Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.
Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :
- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;
- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;
- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .
Bài 2 .
Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :
2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76
Vậy hai chữ số tận cùng của 2100 là 76.
Bài 3 .
Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :
71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343
= ( ...01 ) . 343 = ...43
Vậy 71991 có hai chữ số tận cùng là 43 .
Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :
- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;
- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;
- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;
- Số 26n ( n > 1 ) có tận cùng bằng 76.