Những câu hỏi liên quan
3N
Xem chi tiết
TA
13 tháng 9 2020 lúc 21:44

a) Ta có: \(4x\left(2y-z\right)+7y\left(z-2y\right)\)

        \(=4x\left(2y-z\right)-7y\left(2y-z\right)\)

        \(=\left(4x-7y\right)\left(2y-z\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TA
13 tháng 9 2020 lúc 21:45

b) Ta có: \(2x\left(x+3\right)+\left(3+x\right)\)

        \(=\left(2x+1\right)\left(x+3\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
TA
13 tháng 9 2020 lúc 21:47

c) Ta có: \(3x\left(2x-1\right)+7x^2\left(1-2x\right)\)

        \(=3x\left(2x-1\right)-7x^2\left(2x-1\right)\)

        \(=\left(3x-7x^2\right)\left(2x-1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HG
Xem chi tiết
TV
Xem chi tiết
LT
Xem chi tiết
CD
13 tháng 5 2018 lúc 15:59

phân tích ra nó bằng 24xyz

bạn phải triển tất cả ra

Bình luận (0)
CI
Xem chi tiết
NM
20 tháng 10 2021 lúc 10:27

Đặt \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=x+z\end{matrix}\right.\Leftrightarrow x+y+z=\dfrac{a+b+c}{2}\)

\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\\ =8\left(\dfrac{a+b+c}{2}\right)^3-a^3-b^3-c^3\\ =\left(a+b+c\right)^3-a^3-b^3-c^3\\ =\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-\left(a+b\right)^3+3ab\left(a+b\right)-c^3\\ =3\left(a+b\right)\left(ac+bc+c^2+ab\right)\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\\ =3\left(x+y+y+z\right)\left(y+z+z+x\right)\left(z+x+x+y\right)\\ =3\left(x+2y+z\right)\left(x+y+2z\right)\left(2x+y+z\right)\)

Bình luận (0)
NT
Xem chi tiết
VX
10 tháng 11 2021 lúc 15:05

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

Bình luận (0)
VT
Xem chi tiết
TN
Xem chi tiết
LH
Xem chi tiết