Những câu hỏi liên quan
LT
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
H24
29 tháng 12 2017 lúc 14:09

có 4 cặp:

x=1;y=2

x=-1;y=-2

x=-1;y=2

x=1;y=-2

Bình luận (0)
TV
Xem chi tiết
ND
Xem chi tiết
NT
Xem chi tiết
VM
Xem chi tiết
AH
22 tháng 10 2024 lúc 22:31

Lời giải:

$xy=x-y$

$\Rightarrow xy-x+y=0$

$\Rightarrow x(y-1)+(y-1)=-1$

$\Rightarrow (x+1)(y-1)=-1$
Với $x,y$ nguyên thì $x+1, y-1$ nguyên. Mà tích của chúng bằng -1 nên ta xét các TH sau:

TH1: $x+1=1, y-1=-1\Rightarrow x=0; y=0$

TH2: $x+1=-1, y-1=1\Rightarrow x=-2; y=2$

 

Bình luận (0)
LN
Xem chi tiết
KN
26 tháng 9 2020 lúc 21:58

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa