Những câu hỏi liên quan
DA
Xem chi tiết
VD
Xem chi tiết
AH
8 tháng 6 2024 lúc 23:57

Lời giải:

Ta thấy với $a$ là số tự nhiên bất kỳ thì $a$ và $S(a)$ luôn có cùng số dư khi chia cho 9 nên:

$a-S(a)\vdots 9$

Tương tự với số tự nhiên $2a$ cũng vậy, $2a-S(2a)\vdots 9$

Suy ra:

$(2a-S(2a))-(a-S(a))\vdots 9$

Hay $a-(S(2a)-S(a))\vdots 9$

Hay $a\vdots 9$

 

 

Bình luận (0)
PT
Xem chi tiết
TL
30 tháng 8 2015 lúc 21:00

2a và a có tổng các chữ số bằng nhau 

2a; a có cùng số dư với tổng các chữ số của chúng khi chia cho 9

=> (2a - a) chia hết cho 9

=> a chia hết cho 9

Bình luận (0)
H24
Xem chi tiết
NK
Xem chi tiết
MS
18 tháng 10 2016 lúc 19:15

1.

ta có : abc=100.a+10.b+c=n2-1

cba=100.c+10.b+a= [n-2]2=n2-4.n+4

=>99.[a-c]=4.n- 5

=>4.n -5 chia hết cho 9

vì 100\(\le\) abc\(\le\) 999

100\(\le\) n2-1\(\le\)999      =>    101\(\le\) n2\(\le\) 1000   =>11 \(\le\) 31  =>  39\(\le\) 4.n -5 \(\le\) 119

vì  4n-5 chia hết cho 99 nên 4n-5 =99 => n=29 => abc=675

Bình luận (0)
TP
Xem chi tiết
LA
10 tháng 12 2023 lúc 20:59

Ai giải được thì tớ tặng 100000000000000000000000000000000000000000000000000000 tick

Bình luận (0)
PB
Xem chi tiết
ND
Xem chi tiết
HG
9 tháng 1 2016 lúc 19:19

P > 3 => P = 3k + 1 hoặc P = 3k + 2 (k thuộc N) (vì P là số nguyên tố)

+) P = 3k + 1 => P + 8 = 3k + 9 chia hết cho 3 => P + 8 là hợp số 

+) P = 3k + 2 => P + 4 = 3k + 6 chia hết cho 3 => P + 4 là hợp số (loại)

Vậy P + 8 là hợp số

Bình luận (0)
ND
9 tháng 1 2016 lúc 18:51

help me vs ạ 

nhờ mn help mình nhé !

Bình luận (0)
HG
9 tháng 1 2016 lúc 19:00

Vì S(n) là tổng các chữ số của n => S(n) và n có tổng các chữ số bằng nhau.

=> n và S(n) có cùng số dư khi chia cho 3

=> n - S(n) chia hết cho 3

Bình luận (0)
HL
Xem chi tiết