1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
Chứng minh rằng: Nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chubgs chia hết cho 24
Vì tổng 3 số tự nhiên liên tiếp là 1 số lẻ => trong 3 số đó có 2 số chẵn và 1 số lẻ
Gọi 3 số đó là 2k+2; 2k+3; 2k+4 (k thuộc N)
Tích 3 số trên là: (2k+2).(2k+3).(2k+4)
Vì (2k+2).(2k+3).(2k+4) là tích 3 số tự nhiên liên tiếp nên (2k+2).(2k+3).(2k+4) chia hết cho 3 (1)
Do (2k+2).(2k+4) là tích 2 số chẵn liên tiếp nên (2k+2).(2k+4) chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 => (2k+2).(2k+3).(2k+4) chia hết cho 24
=> đpcm
chứng minh rằng nếu tổng 3 số tự nhiên liên tiếp có tổng là một số lẻ thì tích của 3 số đó chia hết cho 24
Gọi tổng 3 số tự nhiên liên tếp là : x+(x+1)+(x+2)=3x+3
Mà 3x+3 là số lẻ\(\Leftrightarrow\)x là số chẵn hay x chia hết cho 2 (1)
Tương tự, ta có tích của chúng là: x.(x+1).(x+2)=x3.3 chia hết cho 3
Từ (1)\(\Rightarrow\)x3 chia hết cho 23 (chia hết cho 8)
Vậy với x+(x+1)+(x+2) là số lẻ thì x.(x+1).(x+2) chia hết cho 24
* Mình giải theo dấu hiệu chia hết cho 24 đó bạn. Số nào vùa chia hết cho 3 vừa chia hết cho 8 thì chia hết cho 24
1. Chứng minh rằng nếu tổng của 3 số tự nhiên liên tiếp là số lẻ thì tích của chúng chia hết cho 24
2. Tìm số tự nhiên nhỏ nhất . Biết rằng khi chia số này cho 29 ta có số dư là 5 khi chia cho 31 ta có số dư là 28
CMR: Nếu tổng của 3 số tự nhiên liên tiếp là một số lẻ thì tích của chúng chia hết cho 24.
Câu hỏi của Roronoa Zoro - Toán lớp 6 - Học toán với OnlineMath
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Chứng tỏ rằnga) Tổng của 2 số lẻ liên tiếp thì chia hết cho 4.b) Tích của 2 số tự nhiên liên tiếp thì chia hết cho 2.c) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6.d) Tích của 4 số tự nhiên liên tiếp thì chia hết cho 24.e) Tích của 5 số tự nhiên liên tiếp thì chia hết cho 120.
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
Chứng minh rằng: tích của 3 số tự nhiên liên tiếp trong đó có 1 số lẻ thì chia hết cho 24
24=4x6
Gọi 3 số đó lần lượt là (a-1);a;(a+1) (a là số lẻ)
Vì a là số lẻ nên a có dạng 2k+1
(2k+1-1)(2k+1)(2k+1+1)=2k(2k+1)(2k+2)=(4k2+2k)(2k+2)=8k3+8k2+4k2+4k=8k3+12k2+4k chia hết cho 4 (1)
2k(2k+1)(2k+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3
Suy ra 2k(2k+1)(2k+2) chia hết cho 2x3=6 (2)
Từ (1) và (2) => 2k(2k+1)(2k+2) chia hết cho 4x6=24
Hay (a-1)a(a+1) chia hết cho 24 (đpcm)
CMR : nếu tổng của 3 số tự nhiên liên tiếp là 1 số lẻ thì tích 3 số đó chia hết cho 24.
Gọi tổng 3 số tự nhiên liên tiếp là : x + ( x + 1 ) + ( x + 2 ) = 3x + 3
Mà 3x + 3 là số lẻ < = > x là số chẵn hay x chia hết cho 2 ( 1 )
Tương tự , ta có tích của chúng là : x. ( x + 1 ) x ( x + 2 ) = x3 x 3 chia hết cho 3
Từ ( 1 ) <=> x3 chia hết cho 23 ( chia hêt cho 8 )
Vậy với x + ( x + 1 ) (x + 2 ) là số lẻ thì x . ( x + 1 ) x ( x + 2 ) chia hết cho 24
Gọi tổng 3 số tự nhiên liên tiếp là : x + ( x + 1 ) + ( x + 2 ) = 3x + 3
Mà 3x + 3 là số lẻ < = > x là số chẵn hay x chia hết cho 2 ( 1 )
Tương tự , ta có tích của chúng là : x. ( x + 1 ) x ( x + 2 ) = x3 x 3 chia hết cho 3
Từ ( 1 ) <=> x3 chia hết cho 23 ( chia hêt cho 8 )
Vậy với x + ( x + 1 ) (x + 2 ) là số lẻ thì x . ( x + 1 ) x ( x + 2 ) chia hết cho 24
Chứng minh rằng nếu tổng của 2 số tự nhiên liên tiếp ko chia hết cho 2 thì tích của chúng chia hết cho 2
Ta có nếu số bé là 2 và số lớn là 3 thì ta có
tổng 2 số là 2 + 3 = 5
Tích 2 số là 3x2 = 6 và ta có 6 : 2 = 3
=> nếu tồng 2 số tự nhiên liên tiếp ko chia hết cho 2 thì tích của chúng chi hết cho 2
goi a la so lon ; b la so be
ta co a+b=b+1+b(vi a va b la 2 so tu nhien lien tiep)
=2b+1 la so le
lai co
a.b=(b+1)b=b2+b
xet b la so le => b2 le
=> b2+b la so chan ( chia het cho 2)
xet b la so chan => b2 la so chan
=> b2 + b la so chan ( chia het cho 2)
=> DPCM