Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CM
Xem chi tiết
LD
Xem chi tiết
ND
9 tháng 11 2015 lúc 12:38

a)

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{2\left(x+y+z\right)+3}=x+y+z\)

=> 2(x+y+z) +3 =1=> x+y+z=-1

Luôn đùng Vói mọi x;y;z khác o  sao cho x+y+z = -1

b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

x= 3/2 .12=18

y= 4/3 .12=16

z=5/4 .12=15

Bình luận (0)
H24
Xem chi tiết
TN
30 tháng 10 2017 lúc 20:25

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)

Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.

Bình luận (0)
NT
30 tháng 10 2017 lúc 21:01

Kết quả bằng 6 nha 

k tui nha

Thanks

Bình luận (0)

đáp số hai bạn này đúng mà bạn sai chỗ nào đâu

Bình luận (0)
TX
Xem chi tiết
NQ
8 tháng 3 2016 lúc 22:42

theo tính chất tỷ lệ thức 
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2 
=> 1/(x+y+z) = 2 
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1) 
.(y+z+1)/x = 2 <=> y + z + 1 = 2x 
kết hợp với (1) => 1/2 - x + 1 = 2x 
<=> x = 1/2 => y + z = 0 <=> y = -z 
có (x+y-3)/z = 2 
<=> x + y - 3 = 2z 
<=> y - 2z = 5/2 
do y = -z => -3z = 5/2 <=> z = -5/6 
y = 5/6 
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)

Bình luận (0)
TX
Xem chi tiết
TN
6 tháng 3 2016 lúc 21:20

Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)

Bình luận (0)
TN
6 tháng 3 2016 lúc 21:21

còn cách khác đây

Ap dung tinh chat day ti so bang nhau :

(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2

=> 1/(x+y+z) = 2

<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)

(y+z+1)/x = 2 <=> y + z + 1 = 2x

kết hợp với (1) => 1/2 - x + 1 = 2x

<=> x = 1/2 => y + z = 0 <=> y = -z

có (x+y-3)/z = 2

<=> x + y - 3 = 2z

<=> y - 2z = 5/2

do y = -z => -3z = 5/2 <=> z = -5/6 y = 5/6

Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)

Bình luận (0)
SC
6 tháng 3 2016 lúc 21:23

áp dụng t/c DTSBN ta có :                                                                                                                               (y+x+1)/x=(x+z+2)/y=(x+y-3)/z=y+x+1+x+z+2+x+y-3/x+y+z=2y+2x+2z/x+y+z                                                     =2.(x+y+z)/x+y+z=1/x+y+z=2                                                                                                                    =>x+y+z=0,5 => x+z=0,5-y                                                                                                                            =>x+z+2/y=2=>0,5-y+2/y=>0,5-y+2=2y => 3y=2,5 => y=5/6                                                                            làm tương tự

Bình luận (0)
NV
Xem chi tiết
NV
7 tháng 9 2020 lúc 15:14

Giúp mk zới các bn đẹp trai/xinh gái ơi mk cần gấp lắm huhu

Bình luận (0)
 Khách vãng lai đã xóa
NH
7 tháng 9 2020 lúc 15:18

Không mất tính tổng quát , giả sử : 0 < x < y < z 

\(\Rightarrow x+y+z< z+z+z\)

\(\Rightarrow3xyz< 3z\)

\(\Rightarrow xy< 1\)( vô lí  vì do x ; y nguyên dương và khác nhau nên xy > 1 )

Vậy không tồn tại 3 số x , y , z nguyên dương đã cho .

Bình luận (0)
 Khách vãng lai đã xóa
HT
7 tháng 9 2020 lúc 15:24

Vì ta thấy vai trò của x,y,z là như nhau nên không mất tổng quát

Giả sử  \(x\ge y\ge z\ge1\)

Ta có: \(x+y+z=3xyz\)

\(\Leftrightarrow\frac{x+y+z}{xyz}=\frac{3xyz}{xyz}\)

\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Mà \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)

\(\Rightarrow3\le\frac{3}{z^2}\Rightarrow z^2\le1\) , mà x là số nguyên dương 

=> \(z^2=1\Rightarrow z=1\)

Thay vào ta được: \(x+y+1=3xy\)

\(\Leftrightarrow3xy-x-y-1=0\)

\(\Leftrightarrow9xy-3x-3y-3=0\)

\(\Leftrightarrow\left(9xy-3x\right)-\left(3y-1\right)=4\)

\(\Leftrightarrow\left(3x-1\right)\left(3y-1\right)=4=1.4=2.2\)

Vì \(x\ge y\Rightarrow3x-1\ge3y-1\)

Xét ta thấy: \(\hept{\begin{cases}3x-1\equiv-1\left(mod.3\right)\\3y-1\equiv-1\left(mod.3\right)\end{cases}}\)

Nên \(\hept{\begin{cases}3x-1=2\\3y-1=2\end{cases}}\Leftrightarrow x=y=1\)

Vậy x = y = z = 1

Bình luận (0)
 Khách vãng lai đã xóa
MT
Xem chi tiết
TL
18 tháng 11 2015 lúc 13:49

x + y + z = - 90

Bình luận (0)
HA
Xem chi tiết
H24
Xem chi tiết
H24
14 tháng 12 2018 lúc 23:30

Bạn đã ib nhờ mik thì mik làm cho trót vại UwU

\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-x\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}.\)

\(=-\frac{1}{x\left(x-y\right)\left(z-x\right)}-\frac{1}{y\left(y-z\right)\left(x-y\right)}-\frac{1}{z\left(z-x\right)\left(y-z\right)}\)

\(=-\frac{y^2x-yz^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{xz^2-x^2z}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{x^2y-xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-y^2z+yz^2-xz^2+x^2z-x^2y+xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-\left(y^2z-x^2z\right)+\left(yz^2-xz^2\right)-\left(x^2y-xy^2\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-z\left(y^2-x^2\right)+z^2\left(y-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-z\left(y-x\right)\left(x+y\right)+z^2\left(y-x\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)

\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{-xyz\left(y-x\right)\left(z-x\right)\left(y-z\right)}\)

\(=-\frac{-z\left(x+y\right)+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=-\frac{-zx-zy+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-\left(zx-xy\right)-\left(zy-z^2\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{-x\left(z-y\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{x\left(y-z\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{\left(y-z\right)\left(x-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)

\(=\frac{x-z}{xyz\left(z-x\right)}\)

\(=\frac{-\left(z-x\right)}{xyz\left(z-x\right)}\)

\(=\frac{-1}{xyz}\)

Bình luận (0)