Nhờ các bạn giúp nha
x/z+y+1=y/x+z+1=z/x+y-2=x+y-z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
x/z+y+1=y/x+z+1=z/x+y-2=x+y-z
nhờ các bạn giúp
Tìm x,y,z biết:
a) x/y+2+1=y/x+z+1=z/x+y+1=x+y+z
b) 2x/3=3y/4=4z/5 và x+y+z=49
(P/S các bank giúp mình nhanh nha cảm ơn các bạn)
a)
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{2\left(x+y+z\right)+3}=x+y+z\)
=> 2(x+y+z) +3 =1=> x+y+z=-1
Luôn đùng Vói mọi x;y;z khác o sao cho x+y+z = -1
b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
x= 3/2 .12=18
y= 4/3 .12=16
z=5/4 .12=15
1.Cho các số thực x, y, z thỏa mãn:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)
Tính \(P=\frac{x+y}{z}+\frac{y+z}{x}+\frac{z+x}{y}\)
* các bạn giúp mk nha * ( 2 bạn trả lời dưới này bị sai rùi )
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}\)\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
\(\Rightarrow\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=2+2+2=6\)
Vì bài toán không yêu cầu tìm x; y; z nên ta có cách giải ngắn gọn thế thôi nha bn.
Kết quả bằng 6 nha
k tui nha
Thanks
đáp số hai bạn này đúng mà bạn sai chỗ nào đâu
Tìm các số x,y,z biết:
(x+y+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)
CÁC BN GIÚP MÌNH NHA!
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
Tìm các số x,y,z biết:
(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)
CÁC BN GIÚP MÌNH NHA!
Điều kiện: x,y,z khác 0 (hiển nhiên x + y + z khác 0)
theo tính chất tỷ lệ thức
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
.(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6
y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
còn cách khác đây
Ap dung tinh chat day ti so bang nhau :
(y+z+1)/x = (x+z+2)/y = (x+y-3)/z = (y+z+1+x+z+2+x+y-3)/(x+y+z) = 2(x+y+z)/(x+y+z) = 2
=> 1/(x+y+z) = 2
<=> x + y + z = 1/2 <=> y + z = 1/2 - x (1)
(y+z+1)/x = 2 <=> y + z + 1 = 2x
kết hợp với (1) => 1/2 - x + 1 = 2x
<=> x = 1/2 => y + z = 0 <=> y = -z
có (x+y-3)/z = 2
<=> x + y - 3 = 2z
<=> y - 2z = 5/2
do y = -z => -3z = 5/2 <=> z = -5/6 y = 5/6
Vậy nghiệm tìm được (x;y;z) = (1/2;5/6;-5/6)
áp dụng t/c DTSBN ta có : (y+x+1)/x=(x+z+2)/y=(x+y-3)/z=y+x+1+x+z+2+x+y-3/x+y+z=2y+2x+2z/x+y+z =2.(x+y+z)/x+y+z=1/x+y+z=2 =>x+y+z=0,5 => x+z=0,5-y =>x+z+2/y=2=>0,5-y+2/y=>0,5-y+2=2y => 3y=2,5 => y=5/6 làm tương tự
Mình lại nhờ vả các bạn câu này nha . Nhờ ko được thì vả
x+y+z=3xyz với x,y,z nguyên dương
Tìm x,y,z
Giúp mk zới các bn đẹp trai/xinh gái ơi mk cần gấp lắm huhu
Không mất tính tổng quát , giả sử : 0 < x < y < z
\(\Rightarrow x+y+z< z+z+z\)
\(\Rightarrow3xyz< 3z\)
\(\Rightarrow xy< 1\)( vô lí vì do x ; y nguyên dương và khác nhau nên xy > 1 )
Vậy không tồn tại 3 số x , y , z nguyên dương đã cho .
Vì ta thấy vai trò của x,y,z là như nhau nên không mất tổng quát
Giả sử \(x\ge y\ge z\ge1\)
Ta có: \(x+y+z=3xyz\)
\(\Leftrightarrow\frac{x+y+z}{xyz}=\frac{3xyz}{xyz}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)
Mà \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{z^2}+\frac{1}{z^2}+\frac{1}{z^2}=\frac{3}{z^2}\)
\(\Rightarrow3\le\frac{3}{z^2}\Rightarrow z^2\le1\) , mà x là số nguyên dương
=> \(z^2=1\Rightarrow z=1\)
Thay vào ta được: \(x+y+1=3xy\)
\(\Leftrightarrow3xy-x-y-1=0\)
\(\Leftrightarrow9xy-3x-3y-3=0\)
\(\Leftrightarrow\left(9xy-3x\right)-\left(3y-1\right)=4\)
\(\Leftrightarrow\left(3x-1\right)\left(3y-1\right)=4=1.4=2.2\)
Vì \(x\ge y\Rightarrow3x-1\ge3y-1\)
Xét ta thấy: \(\hept{\begin{cases}3x-1\equiv-1\left(mod.3\right)\\3y-1\equiv-1\left(mod.3\right)\end{cases}}\)
Nên \(\hept{\begin{cases}3x-1=2\\3y-1=2\end{cases}}\Leftrightarrow x=y=1\)
Vậy x = y = z = 1
Nhờ các bạn giải giúp bài này :
6/11 .x = 9/2 .y = 18/5 .z và y+z-x= -120 . Khi đó x+y+z= ?
Bài 1:Tìm x,y,z biết
x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
CÁC BẠN ƠI GIÚP MK VS MK CẦN GẤP NHA !!!
AI NHANH MK TIK CHO
Nhờ mí 1 bạn 1 bài nx ạ
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-x\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}.\)
Giúp giùm cái ak =( gần kt r
Bạn đã ib nhờ mik thì mik làm cho trót vại UwU
\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-x\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}.\)
\(=-\frac{1}{x\left(x-y\right)\left(z-x\right)}-\frac{1}{y\left(y-z\right)\left(x-y\right)}-\frac{1}{z\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{y^2x-yz^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{xz^2-x^2z}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}-\frac{x^2y-xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-y^2z+yz^2-xz^2+x^2z-x^2y+xy^2}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-\left(y^2z-x^2z\right)+\left(yz^2-xz^2\right)-\left(x^2y-xy^2\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-z\left(y^2-x^2\right)+z^2\left(y-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-z\left(y-x\right)\left(x+y\right)+z^2\left(y-x\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{xyz\left(x-y\right)\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-x\right)\left[-z\left(x+y\right)+x^2+xy\right]}{-xyz\left(y-x\right)\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{-z\left(x+y\right)+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=-\frac{-zx-zy+z^2+xy}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-\left(zx-xy\right)-\left(zy-z^2\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{-x\left(z-y\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x\left(y-z\right)-z\left(y-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{\left(y-z\right)\left(x-z\right)}{xyz\left(z-x\right)\left(y-z\right)}\)
\(=\frac{x-z}{xyz\left(z-x\right)}\)
\(=\frac{-\left(z-x\right)}{xyz\left(z-x\right)}\)
\(=\frac{-1}{xyz}\)