Tìm x để B bé nhấtB= 2016±2016/999—x
tính B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1*2+/-1/3*4+-1/5*6+...+-1/999*1000)
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+...+\frac{2016}{501}}{\frac{-1}{1.2}+\frac{-1}{3.4}+...+\frac{-1}{999.1000}}=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{999.1000}\right)}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{500}\right)\right]}\)
\(=\frac{2016.\left(\frac{1}{1000}+\frac{1}{999}+...+\frac{1}{501}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+....+\frac{1}{999}+\frac{1}{1000}\right)}=\frac{2016}{-1}=-2016\)
Vậy B = - 2016
Bạn Xyz cho mik hỏi ở phần mẫu số tại sao lại có -2*(1/2+1/4+...+1/1000) vậy? Nó ở đâu ra thế?
tính giá trị của M
cho M=2016-2016:(999-x)
(với x thuộc N)
*N là số tự nhiên
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+\frac{2016}{998}+.....+\frac{2016}{501}}{\frac{-1}{1\cdot2}-\frac{1}{3\cdot4}-\frac{1}{5\cdot6}-.....-\frac{1}{999\cdot1000}}\)
\(B=\frac{\frac{2016}{1000}+\frac{2016}{999}+\frac{2016}{998}+...+\frac{2016}{501}}{-\frac{1}{1\cdot2}-\frac{1}{3\cdot4}-\frac{1}{5\cdot6}-...-\frac{1}{999\cdot1000}}\)
\(B=\frac{2016\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+...+\frac{1}{501}\right)}{-\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{999\cdot1000}\right)}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{999}-\frac{1}{1000}\right)}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1000}\right)\right]}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1000}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{500}\right)}\)
\(B=\frac{2016\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}{-\left(\frac{1}{501}+\frac{1}{502}+\frac{1}{503}+...+\frac{1}{1000}\right)}\)
\(B=\frac{2016}{-1}=-2016\)
tinh B=(2016/1000+2016/999+2016/998+...+2016/501)/(-1/1.2+-1/3.4+-1/5.6+...+-1/999.1000)
tinh B=(2016/1000 2016/999 2016/998 ... 2016/501)/(-1/1.2 -1/3.4 -1/5.6 ... -1/999.1000)
8.(3^x + 3^x+3 + 3^x+5 +...+ 3^x+999) = 3^1001 - 2016^0
tìm STN x lớn nhất để biểu thức sau có GTNN và GTNN đó = bao nhiêu?
A=(x-2016).(x-2015).(x-2014)......(x-2).(x-1)
tìm STN x để biểu thức :B =(2014+2015+2016):(x-2013) có GTLN và GTLN đó =bao nhiêu?
Tìm số nguyên x để các biểu thức sau đạt GTNN
A=(x-1)2+2016
B=|x+10|+2016
C= 5/x-2
\(A=\left(x-1\right)^2+2016\)
Vì \(\left(x-1\right)^2\ge0\)
\(=>GTNN\left[\left(x-1\right)^2\right]=0\)
Vậy \(A_{min}=0+2016=2016\)
Để A đạt giá trị nhỏ nhất thì \(\left(x-1\right)^2=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(B=Ix+10I+2016\)
Vì \(Ix+10I\ge0\)
Nên \(GTNN\left(Ix+10I\right)=0\)
Vậy \(B_{min}=0+2016=2016\)
Để B đạt giá trị nhỏ nhất thì \(Ix+10I=0\)
\(x+10=0\Rightarrow x=-10\)
\(C=\frac{5}{x-2}\)
Khi \(x-2\) càng lớn thì \(C=\frac{5}{x-2}\)càng nhỏ
Mà để C là số nguyên thì \(\left(x-2\right)\in\left\{-5;5\right\}\)
Mà \(\left(-5\right)< 5\)
=> \(GTNN\left(x-2\right)=-5\)
\(\Rightarrow x=\left(-5\right)+2=-3\)
Cho biểu thức: 2016 x a + 2016 x b + 2016 x c = ( a + b + c) x .... . Số thích hợp để điền vào chỗ chấm là:
Số thích hợp để điền vào chỗ chấm là: 2016