tìm x,y là số hữu tỉ biết rằng: a) \(x+\frac{1}{x}=1\)
b)\(x\sqrt{3}=xy^3+1997\)
tìm x,y là các số hữu tỉ biết rằng a,\(x+\frac{1}{x}=1\);b,\(x+\frac{2}{x}=5\)
c,\(x\sqrt{3}+3=y\sqrt{3}-x\)
d,\(\left(x-2\right)\sqrt{25n^2+5}+y-2=0;nthuộcN\)
CMR A = \(\sqrt{1+\frac{1}{xy}}\)thuộc số hữu tỉ biết x; y đều là số hữu tỉ và \(^{x^3+y^3=2x^2y^2}\)
Cho x,y là các số hữu tỉ thỏa mãn đẳng thức: \(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\). Chứng minh rằng \(\sqrt{1+xy}\)là một số hữu tỉ
Đẳng thức đã cho tương đương với
\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)
\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)
\(\Leftrightarrow\left(x+y\right)^2=xy+1\)
\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)
Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh
1) Cho x,y >0 thỏa : \(\left(x+\sqrt{x^2+2017}\right)\)\(\left(y+\sqrt{y^2+2017}\right)\)\(=2017\)
Tính A= \(x^{2017}+y^{2017}+2017\)
2) Tìm x,y,z biết:
\(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
3) Cho a,b,c là các số hữu tỉ khác nhau. Cmr:
\(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)là một số hữu tỉ.
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
3/ \(\sqrt{\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a-b\right)^2\left(b-c\right)^2+\left(b-c\right)^2\left(c-a\right)^2+\left(a-b\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+c^2-ab-bc-ca\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}}\)
\(=|\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}|\) là số hữu tỉ
cho x,y thuộc Q,x khác 0, y khác 0 thỏa mãn \(x^3+y^3=2x^2y^2\).Chứng minh rằng A=\(\sqrt{1-\frac{1}{xy}}\)là một số hữu tỉ
giải giúp mình với
Vì \(x\ne0,y\ne0\) nên điều kiện đã cho tương đương với \(\frac{x}{y^2}+\frac{y}{x^2}=2\Rightarrow\frac{x^2}{y^4}+\frac{y^2}{x^4}+\frac{2}{xy}=4\Leftrightarrow4\left(1-\frac{1}{xy}\right)=\frac{x^2}{y^4}+\frac{y^2}{x^4}-\frac{2}{xy}=\left(\frac{x}{y^2}-\frac{y}{x^2}\right)^2\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{1}{2}\left|\frac{x}{y^2}-\frac{y}{x^2}\right|\)
Cho x,y là số hữu tỉ thỏa man x3+y3=2x2y2 Chứng minh \(\sqrt{1-\frac{1}{xy}}\)là số hữu tỉ
xét 1-1/xy:
=(xy-1)/xy
nhân 4x^3y^3 vào bt:
(4x^4y^4-4x^3y^3)/4x^4y^4
thay 4x^4y^4=(x^3+y^3)^2:
=[(x^3+y^3)^2-4x^3y^3]/(x^3+y^3)^2
=(x^6+y^6-2x^3y^3)/(x^3+y^3)^2
=(x^3-y^3)^2/(x^3+y^3)^2
=>căn(1-1/xy)=lx^3-y^3l / lx^3+y^3l là số hữu tỉ
Cô phải đọc rất kĩ mới hiểu bài của Minh. Lần sau em chú ý dùng công thức có trong phần \(f\left(x\right)\)để bài làm được trực quan hơn.
Cảm ơn em đã trình bày bài giải !
\(x^3+y^3=2x^2y^2\)
<=> \(\left(x^3+y^3\right)^2=4x^4y^4\)
<=> \(\left(x^3-y^3\right)^2=4x^4y^4-4x^3y^3\)
<=> \(\left(x^3-y^3\right)^2=4x^4y^4\left(1-\frac{1}{xy}\right)\)
<=> \(1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)
<=> \(\sqrt{1-\frac{1}{xy}}=\frac{\left|x^3-y^3\right|}{2x^2y^2}\) là số hữu tỉ
Cho \(x;y\) là các số hữu tỉ thoả mãn đẳng thức \(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\). Chứng minh rằng \(\sqrt{1+xy}\) là một số hữu tỉ.
Cho A=\(\sqrt{1+\frac{1}{xy}}\) biết x và y đều là số hữu tỷ và \(^{x^3+y^3=2x^2y^2}\) chứng minh rằng A cũng là số hữu tỷ
1) Tìm x,y là số hữu tỉ sao cho (2x-3).\(\sqrt{2}\)=3-x+2y
2) Tìm số hữu tỉ x,y sao cho: x-\(\frac{1}{x}\) là số nguyên
Mai nộp!!!