Chứng minh rằng : n(2n-3)-2n(n+1)chia hết cho 5 .Với n € Z
Chứng minh rằng:
a, n(2n-3) - 2n(n+1) chia hết cho 5 với mọi n thuộc Z
b, (n-1)(3-2n) - n(n+5) chia hết cho 3 với mọi n thuộc N
a) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)\(⋮\)\(5\)
b) \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=-3\left(n^2+1\right)\)\(⋮\)\(3\)
Chứng minh rằng :
a) n .(2n - 3) - 2n .( n+1 ) chia hết 5 với n thuộc Z
b) (n-1) . ( n+4 ) - ( n-4 ) . (n+1 ) chia hết cho 6 với n thuộc Z
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
Chứng minh rằng :n*(2n-3)-2n*(n+1) chia hết cho 5 với mọi x thuộc Z
Dễ mà.
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)
\(-5n⋮5\forall n\in Z\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\)
Chúc bạn học tốt.
Chứng minh rằng với mọi n thuộc Z thì:
a) n (2n - 3) - 2n (n + 1) chia hết cho 5
b) (n-1) (n+4) - (n-4) (n+1) chia hết cho 6
Chứng minh rằng:
n.(2n-3)-2n.(n+1) chia hết cho 5 với mọi n thuộc Z
làm nhanh giúp mk vs
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia hết cho 5 vs mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5
k mk nhak
Thanks <3
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
1, cho a và b là 2 số tự nhiên. Biết a chia cho 3 dư 1 , b chia cho 3 dư 2. Chứng minh rằng ab chia cho 3 dư 2
2, chứng minh rằng biểu thức n(2n-3)-2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
3, chứng minh rằng biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3 với mọi giá trị của n
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Chứng minh rằng:(2n+3)2-(2n-1)2 chia hết cho 8 với n \(\in\) Z
EZ NUB BRO CRY :>
Giả sử : A=(2n+3)2-(2n-1)2
=(4n2+12n+9)-(4n2-4n+1)
=(4n2-4n2)+(12n+4n)+(9-1)
=16n+8
=8(2n+1) ⋮ 8
Vậy A⋮8 (đpcm)
học lại hàng đẳng thức đáng nhớ đi bro :>
chứng minh rằng n^4+2n^3-n^2-2n chia hết cho 24 với mọi n thuộc Z
Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath