Những câu hỏi liên quan
HC
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
HN
3 tháng 12 2015 lúc 21:26

vì cứ 3 số tự nhên liên tiế lại có 1 số chia hết cho 3 viết dưới dạng 3a(a>0), 1 số chia 3 dư 1 viết dướng dạng 3a-11 và 1 số chia 3 dư 2 viết dưới dạng 3a-2

vậy ta có tổng 3 số tự nhiên liên tiếp là: 3a+3a-1+3a-2=9a-3 luôn chia hết cho 3

 

Bình luận (0)
KG
Xem chi tiết
H24
21 tháng 11 2016 lúc 21:20

vd:1,2,3,4,5,6 trong đó có số 6 chia hết cho 6

vd:11,12,13,14,15,16 trong đo có số 12 chia hết cho 6

Bình luận (0)
KG
21 tháng 11 2016 lúc 21:35

lời giải đi bạn ơi viết vd thi ko đc đâu

Bình luận (0)
NC
Xem chi tiết
NL
2 tháng 3 2018 lúc 22:08

Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều

nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng

hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.

Bình luận (0)
LT
Xem chi tiết
WH
3 tháng 2 2018 lúc 20:33

Gọi 3 STN là a;a+1+a+2 (a\(\in\)N*)

\(\Rightarrow\)Tổng 3 STN là a+(a+1)+(a+2) 

                                 =3a+3\(⋮3\)

Vậy tồn tại 3 STN chia hết cho 3

Bình luận (0)
NA
Xem chi tiết
NA
15 tháng 3 2017 lúc 21:38

tìm x,y,z nguyên tố thỏa \(x^3+y^3=2z^3\)

Bình luận (0)
VH
Xem chi tiết
OO
14 tháng 8 2015 lúc 6:51

1)Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3.
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3.
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a_1,a_2);(a_3,a_4);a_5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)

Bình luận (0)
NN
10 tháng 8 2018 lúc 21:18

Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3. 
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3. 
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a1,a2);(a3,a4);a5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3) 

Bình luận (0)
H24
Xem chi tiết
DH
13 tháng 7 2021 lúc 1:00

Đặt \(n\)số tự nhiên đó lần lượt là \(a_1,a_2,...,a_n\).

Đặt \(S_1=a_1,S_2=a_1+a_2,S_3=a_1+a_2+a_3,...,S_n=a_1+a_2+...+a_n\).

Nếu có tổng nào trong \(n\)tổng trên chia hết cho \(n\)ta có đpcm. 

Nếu không có tổng nào trong \(n\)tổng trên chia hết cho \(n\), khi đó số dư của \(S_k\)khi chia cho \(n\)có thể nhận là \(1,2,...,n-1\)mà có \(n\)tổng, \(n-1\)số dư nên chắc chắn có ít nhất hai trong \(n\)tổng \(S_k\)có cùng số dư khi chia cho \(n\).

Giả sử đó là \(S_x,S_y,x>y\)

Khi đó \(S_x-S_y\)chia hết cho \(n\).

\(S_x-S_y\)là tổng của \(x-y\)số liên tiếp \(S_{y+1},S_{y+2},...,S_x\).

Ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa