Những câu hỏi liên quan
NC
Xem chi tiết
ML
10 tháng 6 2016 lúc 19:48

\(a^2+b^2+c^2=1\Rightarrow\left|a\right|;\left|b\right|;\left|c\right|\le1\Rightarrow a;b;c\le1.\)

\(a^3+b^3+c^3=a^2+b^2+c^2\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)=0\)

Do \(a;b;c\le1\) nên \(a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a^2+b^2+c^2=1\\a;b;c\in\left\{0;1\right\}\end{cases}\Leftrightarrow\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;0\right);\left(1;0;0\right)}\)

Bình luận (0)
ND
Xem chi tiết
ND
Xem chi tiết
H24
17 tháng 9 2017 lúc 20:33

từ giả thiết => a;b;c<=1

\(a\le1\\ \Rightarrow a^3\le a^2\)

tt b^3<=b^2;c^3<=c^2

=>a^3+b^3+c^3\(\le\)a^2+b^2+c^2

dấu = xảy ra <=> a=0hoặc a=1 tt với b;c và a^2+b^2+c^2=a^3+b^3+c^3=1

=>S=1

Bình luận (0)
TD
2 tháng 2 2019 lúc 10:53

a2 + b2 + c2 = a3 + b3 + c3 = 1

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) = 0 ( 1 )

a2 + b2 + c2 = 1 ; a2,b2,c2 \(\ge\)\(\Rightarrow\)a2,b2,c2 \(\le\)1

\(\Rightarrow\)\(\le\)1,b \(\le\)1, c \(\le\)\(\Rightarrow\)1 - a \(\ge\)0 ; 1-b  \(\ge\)0 ; 1 - c \(\ge\)0

\(\Rightarrow\)a2 ( a - 1 ) + b2 ( b - 1 ) + c2 ( c - 1 ) \(\le\)0 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a2 ( a - 1 ) = b2 ( b - 1 ) = c2 ( c - 1 ) = 0

\(\Rightarrow\)a = b = 0 ; c = 1 hoặc b = c = 0 ; a = 1 hoặc a = c = 0 ; b = 1

\(\Rightarrow\)S = 1

Bình luận (0)
TN
Xem chi tiết
HT
Xem chi tiết
H24
3 tháng 11 2018 lúc 19:34

Cái thứ 2 là b. (a^2+c^2) đúng ko bạn

Bình luận (0)
HT
3 tháng 11 2018 lúc 20:58

đúng rồi nha

Bình luận (0)
HT
3 tháng 11 2018 lúc 20:58

Bạn giúp mình với

Bình luận (0)
MN
Xem chi tiết
NV
Xem chi tiết
PC
5 tháng 5 2018 lúc 10:38

Ta có: \(a^3+b^3+c^3-a^2+b^2+c^2=0\) 

\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)  

Mà \(a^2+b^2+c^2=1\) 

\(\Rightarrow\hept{\begin{cases}a\le1\\b\le1\\c\le1\end{cases}}\Rightarrow\hept{\begin{cases}1-a0\\1-b\ge0\\1-c\ge0\end{cases}}\)  

\(\Rightarrow a^2\left(1-a\right)+b^2\left(1-b\right)+c^2\left(1-c\right)\ge0\) 

Dấu "=" xảy ra khi: \(a^2\left(1-a\right)=b^2\left(1-b\right)=c^2\left(1-c\right)\) 

Kết hợp với giả thiết 

=> a,b,c hoán vị 1;0;0 

=> S= 1

Bình luận (0)
HT
Xem chi tiết
PH
4 tháng 11 2018 lúc 10:00

     \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)+2abc=0\)

\(\Rightarrow ab^2+ac^2+bc^2+ba^2+c\left(a+b\right)^2=0\)

\(\Rightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)

\(\Rightarrow\left(a+b\right)\left(ab+c^2+ca+cb\right)=0\)

\(\Rightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

Từ đó a = -b hoặc b = -c hoặc c = -a

Nếu a = -b mà \(a^3+b^3+c^3=1\Rightarrow\left(-b\right)^3+b^3+c^3=1\Rightarrow c^3=1\Rightarrow c=1\)

Khi đó: \(A=\frac{1}{\left(-b\right)^{2017}}+\frac{1}{b^{2017}}+\frac{1}{1^{2017}}=0+1=1\)

Tương tự với các trường hợp b = -c và a = -c, ta tính được A = 1

Bình luận (0)
NH
Xem chi tiết
H24
1 tháng 7 2017 lúc 22:46

a2+b2+c2=ab+bc+ca

<=>2a2+2b2+2c2=2ab+2bc+2ca

<=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)=0

<=>(a-b)2+(b-c)2+(c-a)2=0

<=>a=b=c

mà a+b+c=3<=>a=b=c=1

=>P=0

Bình luận (0)
TB
20 tháng 9 2018 lúc 21:02

P=2017 chứ bạn

Bình luận (0)